
QUASAR: Quad-based Adaptive Streaming And Rendering
EDWARD LU, Carnegie Mellon University, USA
ANTHONY ROWE, Carnegie Mellon University, USA and Bosch Research, USA

(a) (b) (c) (d)

Fig. 1. We present a quad-based streaming system for dynamic scenes that dramatically reduces data transmission rates. Instead of sending entirely new sets
of quads for each frame, our method selectively sends only the quads affected by scene changes and disocclusions. We first fit quads to a scene using a series
of G-Buffers (1a, yellow), which are sent to a client to reconstruct and render. To reduce bandwidth usage, we selectively only transmit quads that capture
scene geometry changes from a reference viewpoint (1b, green) and newly revealed regions due to potential disocclusions (black regions in 1c). The client
integrates these residual quads (1d, green and magenta) with the cached quads from earlier frames. Designed for latency masking in remote rendering, our
approach captures motion parallax, disocclusion events, and transparency effects. Furthermore, it is more compact and efficient than previous methods, while
being well suited for video codecs and adaptable to varying network bandwidth conditions.

As AR/VR systems evolve to demand increasingly powerful GPUs, physically
separating compute from display hardware emerges as a natural approach
to enable a lightweight, comfortable form factor. Unfortunately, splitting the
system into a client-server architecture leads to challenges in transporting
graphical data. Simply streaming rendered images over a network suffers
in terms of latency and reliability, especially given variable bandwidth. Al-
though image-based reprojection techniques can help, they often do not
support full motion parallax or disocclusion events. Instead, scene geome-
try can be streamed to the client, allowing local rendering of novel views.
Traditionally, this has required a prohibitively large amount of interconnect
bandwidth, excluding the use of practical networks.

This paper presents a new quad-based geometry streaming approach that
is designed with compression and the ability to adjust Quality-of-Experience
(QoE) in response to target network bandwidths. Our approach advances
previous work by introducing a more compact data structure and a temporal
compression technique that reduces data transfer overhead by up to 15×,
reducing bandwidth usage to as low as 100 Mbps. We optimized our design

Authors’ addresses: Edward Lu, elu2@andrew.cmu.edu, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA, 15213, USA; Anthony Rowe, agr@andrew.cmu.edu,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA and Bosch
Research, 2555 Smallman St, Unit 301, Pittsburgh, PA, 15222, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2025/8-ART
https://doi.org/10.1145/3731213

for hardware video codec compatibility and support an adaptive data stream-
ing strategy that prioritizes transmitting only the most relevant geometry
updates. Our approach achieves image quality comparable to, and in many
cases exceeds, state-of-the-art techniques while requiring only a fraction
of the bandwidth, enabling real-time geometry streaming on commodity
headsets over WiFi.

CCS Concepts: • Computing methodologies → Rendering; Virtual
reality; Image-based rendering.

Additional Key Words and Phrases: Streaming, Compression, Texture-space
shading, Object-space shading, Temporal coherence, Virtual reality

ACM Reference Format:
Edward Lu andAnthony Rowe. 2025. QUASAR: Quad-basedAdaptive Stream-
ing And Rendering. ACM Trans. Graph. 44, 4 (August 2025), 19 pages. https:
//doi.org/10.1145/3731213

1 INTRODUCTION
Remote rendering [Shi andHsu 2015] aims to deliver high-quality 3D
graphics to devices with limited resources by offloading rendering
calculations and streaming the results to an end client. The main
challenge of many untethered remote rendering systems is dealing
with the latency and unreliability of typical networks. This leads
to high motion-to-photon latency, negatively affecting Quality-of-
Experience (QoE). For remote rendering, it is crucial to ensure that
perceived latency remains low to avoid motion sickness.

Current remote rendering systems often utilize the speed and ef-
ficiency of built-in video codec hardware available on most devices.
In typical designs, a high-end server receives a camera pose from a
client, renders a high-quality image corresponding to that pose, and

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0009-0007-5627-0244
HTTPS://ORCID.ORG/0000-0003-2332-9450
https://orcid.org/0009-0007-5627-0244
https://orcid.org/0000-0003-2332-9450
https://doi.org/10.1145/3731213
https://doi.org/10.1145/3731213
https://doi.org/10.1145/3731213

2 • Edward Lu and Anthony Rowe

transmits the image as part of a video stream. When transmitted
over a network, this can lead to the display of late frames on the
client side. To mitigate this, many systems include an additional
reprojection step, where the received frame is warped to the current
viewpoint before being displayed. The simplest form of reprojec-
tion is Asynchronous Time Warping (ATW) [van Waveren 2016],
where a homography is applied to the received frame. Commercial
systems [Google 2019; Magic Leap 2024; Meta Platforms 2021, 2024;
Microsoft 2020; NVIDIA 2020, 2023; Valve 2015] use a combination
of close-by edge servers, server-side client pose prediction, and ATW
to achieve low perceived latency. Although pose prediction systems
have been shown to work under low network latencies (< 40 ms
RTT) [Lee et al. 2015], more complex reprojection is required when
latencies are higher. Although effective in compensating for rota-
tional mismatches, ATW fails to capture the full motion parallax of
a 3D environment, which becomes more apparent if the user moves
quickly or if latencies are higher. More advanced image-based ren-
dering techniques like Asynchronous SpaceWarping (ASW) [Oculus
2016] can account for motion parallax but fail to capture disocclu-
sions, where occluded portions of a scene (e.g., geometry hidden
behind other geometry) become visible under camera movements.
The problem can be formulated as follows: if the client pose is

mispredicted—such that the server believes the client will be at pose
𝑃𝑠 , but the client is actually at 𝑃𝑐 when it receives the frame—the
server must transmit enough information to fully compensate for
rendering mismatches due to the pose error |𝑃𝑠 − 𝑃𝑐 |. This can be
thought of as preparation for an imaginary client-side viewing vol-
ume centered at 𝑃𝑠 , where the client can be anywhere within the vol-
ume, and all potential disocclusions within the range should be fully
supported. As a result, these systems often arrive at a bandwidth vs.
reprojection quality trade-off where they transmit additional scene
information to capture disocclusions and mask latency.
To address this, recent works [Hladky et al. 2021, 2019; Mueller

et al. 2018; Voglreiter et al. 2023] have proposed sending both visi-
ble and potentially visible scene geometry along with intermediate
shading results, usually stored in a packed texture atlas. These sys-
tems employ a “split” in the rendering pipeline, where the server
performs expensive lighting calculations, while the client primarily
handles vertex processing and texture mapping of incoming geome-
try, generating novel views with a forward rendering pass until the
next server frame arrives. However, if a client is to have no a priori
knowledge of the scene, then geometry must be sent in real time.
As industry moves towards higher polycount scenes [Karis et al.
2021], it remains challenging to compress large amounts of scene
data (e.g., triangles) to fit within standard bandwidth requirements.
As a result, other approaches transmit an approximated form of the
scene geometry, combining multiple potential viewpoints within
the viewing volume. Notably, [Hladky et al. 2022; Lall et al. 2018]
use a series of fitted and merged tiles (or quads) generated from a
G-Buffer and projected into 3D. These approaches support client
movement from within a head box and use overlapping quads to
handle disocclusions. Although the transmitted data (typically quads
defined by a normal and depth value) can be heavily quantized, a
single frame can still consume a significant amount of bandwidth.
In our experiments, these techniques can result in data rates on the

order of 5 Gbps, which dramatically exceed most networks and are
only applicable for custom board-level interconnects.

In this paper, we present several enhancements to quad/tile-based
scene approximation and transmission that make it possible to
stream geometry information to mobile AR/VR headsets. We sup-
port scenarios where network latencies and bandwidths are greater
than 40 ms with hundreds of Mbps of throughput. This could be
a local rendering machine with a wireless link or even a nearby
cloud-hosted option.

We built on a quad-based approximation [Hladky et al. 2022; Lall
et al. 2018] because it provides high visual quality and allows for
distortion-free texture mapping from a video stream. To support
commodity network links, we introduce a streaming scheme that
leverages temporal coherence by transmitting only updated and
newly revealed geometry caused by scene and viewpoint changes,
leveraging the fact that most content remains static across frames.
We also improve upon the real-time quad generation algorithm
of prior work, achieving more compact data sizes and faster per-
formance. Instead of merging multiple camera viewpoints, which
requires significant quad overlap, we handle potentially disoccluded
regions by uncovering hidden fragments using a depth peeling
method from [Kim and Lee 2023]. We show that our representation
is more amenable to network rate adaptation and QoE optimization,
which are essential in any streaming system. Specifically, we de-
scribe a quad packing and texture atlas creation scheme that makes
it easy to downsample hidden layers and reduce data rate to adapt
to bandwidth availability. Lastly, our technique delivers a higher
quality than several baseline methods and achieves a quality com-
parable to [Hladky et al. 2022], while requiring less memory and
operating at a lower data rate.

In summary, we make the following contributions:
• An end-to-end quad-based geometry approximation and stream-
ing system for remote rendering under typical network band-
widths. We improve state-of-the-art geometry streaming tech-
niques with a depth peeling technique which leads to a more
compact data structure and introduce a lightweight temporal
compression scheme.

• A discussion of how our technique can be network rate-
adaptive and better for QoE optimization.

• A characterization and evaluation of our system under vary-
ing network latencies and bandwidths.

• An open-source implementation of our approach and all of
our baseline approaches (many of which do not have open
implementations) to support the research community. Our
implementations can operate in real time over an actual net-
work. The code for this paper can be accessed at:
https://github.com/EdwardLu2018/QUASAR.

2 RELATED WORK
In this section, we discuss several remote rendering approaches,
emphasizing systems that aim to minimize perceived latency and
bandwidth usage. We describe image-based rendering (IBR), scene
approximation, and other split rendering techniques and how they
relate to our work.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://github.com/EdwardLu2018/QUASAR

QUASAR: Quad-based Adaptive Streaming And Rendering • 3

2.0.1 IBR and reprojection. IBR techniques such as ATW [van Wa-
veren 2016] and ASW [Oculus 2016] warp received image frames
to novel viewpoints. However, because of the absence of additional
geometric information (e.g., depth), ATW fails to capture motion
parallax under high network latencies. Although ASW accounts for
motion parallax, it does not handle disocclusion effects caused by
motion, often resulting in visible artifacts, particularly for objects
near the camera. Outatime [Lee et al. 2015] incorporates the pre-
diction of client poses along with a coarse depth map to improve
reprojection. Similar methods [Didyk et al. 2010a,b; Mark et al. 1997]
stream depth maps to generate meshes or splats to approximate the
geometry of the scene. Nevertheless, a single depth map is insuf-
ficient to fully capture disocclusions and out-of-frame content, as
new geometry may be revealed under viewpoint shifts.

2.0.2 Multi-view warping. ProxyIBR [Reinert et al. 2016] transmits
multiple rendered views with varying fields of view to address
disocclusions and out-of-view regions. Similarly to our approach, it
employs depth peeling to transmit hidden portions of the scene to
the client. In addition, ProxyIBR sends decimated scene geometry as
a proxy to improve the accuracy of reprojection. Similarly, MPEG’s
immersive video standard (MIV) [MPEG 2023] adopts a multiview
encoding strategy, packing color and depth images into a single
HEVC video frame. The client reconstructs these frames and renders
the scene using multi-layered spheres.

2.0.3 Depth streaming. To support these techniques, an efficient
mechanism is required to stream depth images. High-accuracy scene
reconstruction typically demands high bit-width depth representa-
tions (commonly 16 bits ormore), which are challenging to compress.
Previous work has explored the compression of depth into standard
video codecs [Pece et al. 2011], although the resulting reconstruc-
tion may be inaccurate or unsuitable for some applications. Other
approaches leverage GPU-accelerated decoding to transmit multi-
ple depth views for light field streaming [Koniaris et al. 2018], or
use masks and bounding boxes to temporally compress depth up-
dates [Koniaris et al. 2017]. Inspired by these methods, our method
adopts a similar strategy, emphasizing the transmission of only the
updated scene information to the client.

2.0.4 Streaming lighting. Lighting calculations are often a signifi-
cant component of the rendering pipeline. Previous work [Crassin
et al. 2015; Majercik et al. 2019] has shown that global illumination
(GI) can be precomputed and streamed to a client to enable advanced
shading effects. Light probes [Stengel et al. 2021] can be packed into
a video stream and used to apply precomputed irradiance. On the
client, a full rendering pass with direct lighting is performed, with
the streamed irradiance applied to approximate global illumination
(GI). Although this approach offers high visual quality with minimal
reprojection artifacts, it requires substantial client-side computation,
as the client must render entire portions of the scene. As scenes
grow increasingly complex [Karis et al. 2021], client memory re-
mains limited, making it unlikely that full 3D scenes will fit on
portable devices with constrained resources.

2.0.5 Collaborative rendering. Rather than requiring the client to
perform a complete render pass of the entire scene, some techniques
partition the scene into two sets of objects: those rendered remotely

for high quality and those rendered locally for low latency [Lai
et al. 2017; Lu et al. 2023]. However, this approach demands care-
ful matching between locally and remotely rendered content, as
local objects should be rendered with full lighting effects. Taking
this a step further, the server can render and stream residual im-
ages [Meng et al. 2020], representing the difference between low-
and high-quality render passes from a given viewpoint. The client
performs a low-resolution pass and applies the residual for refine-
ment. Furthermore, high-quality received images can be cached
and reused for reprojection [Boos et al. 2016; Cuervo et al. 2015].
View-dependent texture maps [Cohen-Or et al. 1999] can also be
transmitted, allowing the client to warp and adjust rendered im-
ages during viewpoint changes to further optimize performance
and quality. However, these approaches assume powerful clients
with substantial rendering capabilities. In contrast, our work targets
thin clients with limited memory and thermal capacity, which are
unlikely to support full-scene rendering.

2.0.6 Geometry streaming. Instead of sending depth maps that can
limit the resolution of the reconstructed geometry, triangle prim-
itives can be transmitted to capture the full geometry of a view.
This is similar to out-of-core rendering solutions [Karis et al. 2021;
Mlakar et al. 2024], which attempt to compress and simplify com-
plex scene geometry stored on disk (in the remote rendering case,
stored on a resource-plentiful server) into smaller payloads to stream
to the GPU. The technique described in [Debevec et al. 1998] can
be adapted to stream visible triangles and fill holes by averaging
the colors of close-by polygons. Extending this idea, [Mueller et al.
2018] captures both visible and potentially visible triangles and packs
shading into a texture atlas sent as a video stream. [Hladky et al.
2021, 2019] improves upon the sampling and temporal stability of
these atlases. Similarly to our technique, [Voglreiter et al. 2023]
uses geometric erosion and depth peeling to uncover potentially
visible triangles. Although these methods can fully capture disoc-
clusions under high network latencies, they often rely on complex
texture-packing algorithms, with temporal stability across consecu-
tive atlases largely managed manually. Additionally, the triangles
themselves can be difficult to compress while maintaining high
quality. Although geometry simplification methods exist [Garland
and Heckbert 2023; Sander et al. 2001], they are not suitable for
real-time rendering.

2.0.7 Geometry proxy streaming. Instead of transmitting full mesh
information for each view, geometry can be approximated using
techniques such as billboarding [Andujar et al. 2004; Décoret et al.
2003] or surfel-based representations [Pfister et al. 2000; Shade et al.
1998; Zwicker et al. 2001]. Quadtree-based approaches [Didyk et al.
2010c] fit and stream hierarchical quads to a scene viewpoint for
warping. Seurat [Lall et al. 2018] employs an offline process to gen-
erate fitted quads that approximate up to 64 potential viewpoints
within a viewing volume. QuadStream [Hladky et al. 2022] extends
this by enabling real-time quad construction, generating quads from
a G-Buffer and packing their color into a texture atlas, while in-
corporating multiple viewpoints to handle disocclusions. Although
QuadStream achieves high reconstruction quality, it incurs substan-
tial data rates, typically around 1–5 Gbps based on our experiments.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Edward Lu and Anthony Rowe

Camera
Pose

Server

Client

Locally Render Until
New Frame Arrives

Generate G-Buffers using
EDP + wide FOV

Generate Initial
Quads

Packed Quads +
Texture Video

Generate Texture-
mapped Mesh

Decompress Quads +
Texture

Compress Quads +
Texture

Merge/Simplify

…

Repeat for All Layers

I- or P-Frame
Processing

if reference frame:
 proceed

if residual frame:
 fill depth buffer
 with previous mesh

I- or P-Frame
Processing

if reference frame:
 reset local quads

if residual frame:
 update local quads

…

Fig. 2. High-level system pipeline. Using the predicted camera pose, we render a set of G-Buffers using Effective Depth Peeling, which lets only potentially
visible fragments pass. For each layer, we generate a corresponding set of quads, which are then merged and simplified to be packed and compressed. We
additionally perform temporal compression, sending updates of non-static geometry. A texture atlas is created by appending the color of each layer into a
video frame. Upon receiving the compressed quads and video stream, the client constructs a layered textured mesh to render novel views.

Our method improves upon QuadStream by applying temporal com-
pression and quad caching to significantly reduce data transmission.

2.0.8 Layered representations. Layered representations such asmul-
tiplane images (MPIs) [Mildenhall et al. 2019; Penner and Zhang
2017; Zhou et al. 2018], layered meshes [Jeschke and Wimmer 2002],
and layered imposters [Gernot 1998] approximate scene geome-
try using stacks of alpha-blended surfaces to capture disocclusions
and view-dependent effects. Multi-sphere images (MSIs) [Attal et al.
2020] extend this concept to spherical panoramas for immersive
VR. However, depth discretization in these representations makes it
challenging to accurately model slanted or oblique surfaces without
introducing a large number of layers, which increases storage and
computational costs. Additionally, generating these representations
typically requires many input images and significant processing
time. [Broxton et al. 2020] improves upon MSIs by generating a lay-
ered mesh structure to reduce the bandwidth for 3D video streaming.
We adopt a similar layered mesh representation, which we find crit-
ical for real-time rendering on thin clients and robustly handling
disocclusions, while also enabling a more compact and accurate
approximation of scene geometry.

2.0.9 Learned representations. Neural and inverse rendering meth-
ods can generate scene representations with superior visual quality
compared to traditional geometry-based approaches. These tech-
niques directly optimize for photometric accuracy and view-dependent
appearance, capturing complex lighting effects and fine scene details.
Learning-based methods such as Neural Radiance Fields (NeRFs)
[Mildenhall et al. 2021] use implicit representations to reconstruct
continuous volumetric radiance fields, while Gaussian Splats [Kerbl
et al. 2023] generate explicit 3D Gaussian primitives for novel view

synthesis. Thin-client rendering for these approaches has advanced
significantly: NeRFs have achieved real-time performance on mo-
bile hardware through hash grid encoding [Müller et al. 2022] and
mesh-based texture baking [Chen et al. 2023], while Gaussian Splats
can be sparsified to run efficiently on resource-constrained de-
vices [Mallick et al. 2024]. Streaming techniques are also improving;
NeRFPlayer [Song et al. 2023] exploits the temporal coherence of 4D
NeRF features for dynamic scene streaming, and real-time Gaussian
splat video playback has been demonstrated [Wu et al. 2024], with
additional work leveraging hardware-accelerated image and video
codecs to further reduce bandwidth [Morgenstern et al. 2025; Wang
et al. 2024]. Although both methods can produce near-photorealistic
results, they are often constrained by slow training times, typically
requiring minutes for moderate quality and several hours for high
fidelity, as well as a need for large collections of input images. While
ongoing research is accelerating training efficiency [Wang et al.
2023], achieving real-time training from sparse inputs remains an
open challenge.

3 SYSTEM OVERVIEW
Wemake several assumptions common to remote rendering systems.
(1) Higher latency and jitter increase pose errors, causing visual
artifacts such as misalignment, blurring, and/or warping. (2) Pose
prediction can be unreliable under poor network conditions. The
best we can do to compensate is define a client-side “viewcell” (e.g.,
a cube or sphere), sized by the worst-case prediction error, and
transmit enough data to cover all views within it. (3) Client motion
between server frames is relatively small (i.e., latency and/or client
speed is not so high that the client’s displacement is significantly
large), ensuring some overlap in geometry across frames. In our

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

QUASAR: Quad-based Adaptive Streaming And Rendering • 5

pixel
centers

generated
quads

sub-pixel
cornersactual scene

geometry

novel viewreference view

(a) (b) (c)

far clipping plane

Fig. 3. (a,b): Using one quad per pixel can cause small gaps (inmagenta)
under view offsets. (c): Splitting into four sub-quads and adjusting corner
positions with depth offsets can help cover these gaps.

experiments, we target typical human moving speeds of around 1–4
m/s.

3.1 High-level System Pipeline
Our system consists of a server and a client, where the server has sig-
nificantly more resources—such as greater CPU/GPU performance,
memory, and storage—while the client has modest but sufficient
computing capabilities. Periodically, the client sends its current pose
and camera parameters to the server, the rate of which determines
the server’s framerate. In our experiments, we set this rate to be 30
FPS, while the client runs at the framerate of its display (e.g., 60 or
72 Hz). The server receives the client pose at a delay depending on
network latency and jitter.
Using this pose (along with previous poses), the server predicts

where the client will be 𝑛 ms into the future, where 𝑛 is determined
by a rough estimate of the current network latency (this can be done
by pinging the client and measuring the time difference). Using the
predicted client pose, the server renders 𝑘 layers using depth peeling
(see Sec. 3.3), which reveals visible and potentially visible fragments.
This generates 𝑘 G-Buffers, with 𝑘−1 hidden layers. For each layer,
the server generates quad surfels using a technique similar to Quad-
Stream [Hladky et al. 2022], with modifications to support further
compression (see Sec. 3.2). Lastly, we generate a final set of quads
at a wider field of view to capture out-of-frame regions.

For color, we create a texture atlas by stitching the final color of all
layers into a single H.264 video. In Sec. 3.4.1, we show that straight-
forward sequential stitching makes better use of video encoding
hardware compared to a random arrangement of image patches.

Quads are compressed using zstd [Meta Platforms 2016] compres-
sion, which we chose for its balance of compression quality and
decompression speed. The texture atlas is compressed using the
nvenc encoder and sent over UDP, while quad metadata is transmit-
ted via TCP. Although we assume a lossless network, real-world
deployment would benefit from connectionless protocols (like UDP)
with typical multimedia error correction techniques. Dropped pack-
ets containing quads could be recovered using neighboring data,
but we leave loss handling for future work.

empty,
use prev

quads

similar

not similar

[parallel] forall 2x2 quads:

Quad Map (quad size=n) Quad Map (quad size=2n)

similar

not similar

Fig. 4. Top:Quadmerging and storage with consecutiveQuadMaps.Quads
aremerged based on plane similarity. (quad size=n)means the quad stored
in the associated Quad Map spans n×n pixels in image space. Once the
quads are merged, their positions in the previous Quad Map are cleared.
Bottom: Visualization of merged quads during reconstruction.

Once received, payloads are decompressed by the client, which
runs a series of compute shaders to generate a layered mesh, texture-
mapped with a video frame. Using a simple forward rendering pass,
the client renders the mesh until a new frame from the server arrives.
See Fig. 2 for a high-level visualization.

3.2 Quad Generation
In this section, we present our quad construction algorithm, which
is based on the method introduced in QuadStream. Given a G-Buffer,
our algorithm fits a set of quad proxies—3D primitives created by
intersecting planes with quad frustums, which represent the local
view frustums of individual pixels. Each quad proxy is aligned with
a pixel’s surface normal and positioned at the corresponding depth.
Optionally, each proxy may incorporate a set of depth offsets that
locally adjust its geometry to better align with the underlying scene
geometry (see Fig. 3). By incorporating these offsets, quad proxies
can accurately approximate complex surfaces.
Given a predicted pose, the server renders 𝑘 G-Buffers of size

(width, height). To support quad creation, we pre-allocate 𝑚 =

⌊log2 (min(width, height))⌋ + 1 GPU-resident Quad Maps—a hier-
archy of 2D buffers at progressively halved resolutions, from full
size down to (width, height)/2𝑚 . These act as lookup tables for re-
trieving quad proxies of various sizes (e.g., an 8×8 quad maps to
(width, height)/8). We also allocate a 16-bit RGBA Depth Offset Tex-
ture at twice the G-Buffer resolution. Quad generation and merging
are run entirely on the server due to the high memory requirements.

3.2.1 Creating Initial Quad Proxies. For each G-Buffer, a compute
shader is dispatched to generate an initial dense quad set. The objec-
tive is to fit a quad to each pixel, and subdivide each quad into four
sub-quads to create a set of depth offsets. This is achieved by sam-
pling the depth and normals of a target pixel and its 8 neighbors to
construct 9 planes. The depth at each sub-quad corner is determined

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Edward Lu and Anthony Rowe

(a) 1st set of quads from
visible layer 0.

(b) Novel view from in-
side viewing sphere.

(c) 2nd set of quads from
hidden layer 1.

(d) 3rd set of quads from
hidden layer 2.

(e) Final set of quads from
wide FOV.

(f) Mesh is reconstructed
on a client from quads.

Fig. 5. 5a: A series of quads are fitted to a scene on the server using the received camera view. The quads are merged to simplify the data size and geometry. 5b:
When the client receives the data payload containing the quad data structures, it is at a different view, revealing holes (black regions). 5c,5d: To account for
disocclusions, we use an Effective Depth Peeling technique to peel away fragments, uncovering potentially visible hidden fragments and create an additional
set of quads to cover holes. 5e: We also render a wide FOV, using the already created quads as a depth mask to create a final set of quads to cover out-of-frame
regions. 5f: Using these quads, the client reconstructs the scene as a multi-layered mesh.

by projecting the corner onto the target pixel’s plane and the two or
three nearest neighboring planes. If the distance between the target
and nearest projections are below a depth threshold 𝛿max, the depth
of the corner is the average of the neighboring projections; other-
wise, it is the depth of the target pixel projection. This approach
captures depth discontinuities while also filling small gaps caused
by quad-based geometry approximation. After the corner depths are
computed, we find the distance of each corner to the target pixel’s
plane, creating 16 depth offsets, 4 per sub-quad. Although some of
these values may be duplicated, having 16 depth offsets instead of 9
simplifies lookup operations. If all depth offsets are above a quad
flattening threshold 𝛿flatten, the values are stored in four RGBA slots
in the Depth Offset Texture. The target pixel’s plane is stored into
the Quad Map of size (width, height). For reference, the code for
this algorithm is provided in our open-source release.

3.2.2 Merging Quad Proxies. Using the initial set of quads directly
results in complex geometry that is impractical for streaming. To
address this,𝑚−1 consecutive compute shaders are dispatched to
progressively simplify the quads. Each shader operates on consecu-
tive Quad Maps, loading groups of four adjacent proxies from the
higher-resolution map. If the differences between their plane equa-
tions fall below a plane similarity threshold 𝛿sim, the four planes
are averaged, depth offsets are recalculated, and a larger size quad
is stored in the lower-resolution map. The corresponding entries in
the previous map are then cleared. See Fig. 4 for a visualization.

To reduce the number of quads, we can apply a coarser merging
heuristic during the initial passes. Planar similarity constraints can
be relaxed and merging is performed if the four quads are similar or
the quads do not fall within a depth discontinuity (i.e., the depth dif-
ferences between the corresponding G-Buffer pixels are below 𝛿max).
This coarse merging strategy essentially performs an edge-aware
downsampling of the input G-Buffer which dramatically reduces
data size while preserving depth discontinuities. The number of
coarse merging passes is a tunable parameter in our system.

3.2.3 Gathering Final Quad Proxies. Finally, a series of compute
shaders are executed to scan all𝑚 Quad Maps, collecting non-empty
entries to generate the final quad proxy set to stream. The data
structure used to store these quads is detailed in Sec. 3.4.

(a) QuadStream w/o
boundary expansion.

(b) QuadStream w/
boundary expansion.

(c) Ours w/o boundary
expansion.

Fig. 6. Impact of boundary expansion on reconstruction coverage. We show
a zoomed-in portion of a novel view rendering. The center view quads are
yellow, while additional views/layers are blue, green, red, cyan, and
pink. 6a:QuadStream can have visible gaps (inmagenta) due to non-pixel-
aligned G-Buffers from view sampling. 6b: Expanding quad boundaries
by one pixel can help mitigate this, at the cost of increasing the number
of quads. 6c: In contrast, our method generates pixel-aligned G-Buffers,
avoiding these artifacts entirely and enables more quad merging.

3.3 Adding Potentially Visible Quads
Approximating only a single view with a series of quad proxies
leads to disocclusion artifacts, such as visible holes, when rendering
novel views from within a viewcell. As the viewpoint shifts, previ-
ously occluded regions of the scene become visible and should be
captured and transmitted to the client. To address these artifacts, it
is necessary to identify potentially visible geometry and generate ad-
ditional quad proxies for coverage. QuadStream [Hladky et al. 2022]
adds eight additional quad sets generated with viewpoints at the
corners of a box-shaped viewcell, using previously generated quads
as masks to reduce redundancy. While this approach offers partial
coverage, undersampling may miss geometry that is occluded across
all the sampled views, resulting in holes in novel viewpoints. For
reference, Seurat [Lall et al. 2018], an offline method, samples 16–64
viewpoints within a view box, which has been shown to provide
sufficient coverage.
In contrast, our method captures potentially visible geometry

by using a depth peeling technique [Everitt 2001; Mammen 1989],
which can capture hidden fragments behind a visible view. How-
ever, naively applying depth peeling will introduce significant re-
dundancy, as many fragments remain occluded or are irrelevant in
all views within a viewcell. To address this, we adopt the Effective
Depth Peeling (EDP) method proposed in [Kim and Lee 2023], which
introduces the concept of Potentially Visible Hidden Volumes (PVHVs)
and incorporates an early visibility test to selectively identify and

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

QUASAR: Quad-based Adaptive Streaming And Rendering • 7

(a) QS texture atlas, at time 𝑡 . (b) QS texture atlas, at time 𝑡+1.

(c) Our texture atlas, at time 𝑡 . (d) Our texture atlas, at time 𝑡+1.

Fig. 7. Example 4096×4096 texture atlas video frames at two consecutive
timestamps for QuadStream and our method. 7a,7b: QuadStream employs
a binning strategy using the generated quad proxies and attempts to reuse
patches across frames. 7c,7d: Our atlas is constructed by appending all the
layers generated by EDP. Due to an improved temporal consistency, our
method makes better use of video codecs, achieving smaller video sizes.

process only the fragments likely to contribute to a novel view. Us-
ing the method described in the paper, we generate 𝑘−1 additional
G-Buffers, each corresponding to a hidden layer (see Fig. 5).
Since EDP supports novel views from within a defined search

radius, our technique supports viewing spheres, in contrast to cube-
shaped viewcells used in QuadStream or Seurat. We define the
bounding radius for EDP 𝐸 as half the diameter of our viewing
sphere. We discard any fragments that fall inside a PVHV as well as
any non-opaque fragments to handle transparency. In our experi-
ments, we found that the false positive rate (a fragment is captured
but will never be visible) is small, and erroneously created quad
proxies are not visible to the user. False negative fragments can cre-
ate holes, but the rate is also small and is not noticeable in practice.
For a detailed evaluation, refer to [Kim and Lee 2023].
EDP offers several advantages over prior methods. As shown

in Fig. 6, QuadStream’s sparse sampling can lead to visible gaps
after reconstruction. These gaps are not always fully covered by
additional views, so QuadStream introduces one-pixel boundary
quads to fill them. Our QuadStream implementation checks each
empty pixel during initial quad generation and inserts an extra quad
if it neighbors a non-empty pixel, assigning it the neighbor’s color.
Although these could later be merged, they can also increase the
overall size of the data. Using EDP avoids this issue entirely, as all the

generated G-Buffer layers are pixel-aligned. Moreover, QuadStream
relies on multiple viewpoints to cover occluded regions, leading to
overlapping quads that are difficult to merge. In contrast, EDP can
capture complete occluded geometry within a single layer, enabling
more aggressive quad merging. As shown in Fig. 6, our method
covers the same region with just two quad sets compared to four
for QuadStream, achieving similar visual quality with fewer quads.

3.4 Storage and Data Payload
In this section, we describe how we construct our data payload,
which consists of a video texture and metadata for quad proxy
structures.

3.4.1 Texture Atlas. After we create the quad proxies for all layers
and wide FOV, we composite the final video frame by appending
the color buffers generated from each G-Buffer. Our texture atlas
is constructed using a straightforward approach: individual color
textures are sequentially appended to form a 4096×4096 video frame,
which is then passed to a video encoder. This simple linear packing
strategy surprisingly outperforms the bin-packing method used in
QuadStream by around 1.5–2× in terms of video data rates in our
experiments. This can be attributed to the inherent design of video
encoders, which are specifically optimized to take advantage of
spatial and temporal locality typically observed in natural video
footage. See Fig. 7 for a reference video frame for both methods.
Linear packing of full image frames also gives our approach greater
flexibility in allocating resolution, enabling reducing resolution
for color data derived from hidden layers. Given that texture data
are relatively small compared to geometry data, we leave these
optimizations for future work.

This approach has twomain limitations. First, to fit into a 4096×4096
video frame, we can support only up to three hidden layers along
with a wide FOV, which we found to be sufficient in our experiments.
Second, blurring can occur at the edges of the image due to the na-
ture of block-based video codecs. As a result, color information from
background quads can bleed into neighboring foreground quads at
object boundaries, leading to perceptual edge artifacts. Although
these artifacts are typically subtle, they can become noticeable in
high-contrast regions or under close inspection. Future work could
explore a video macroblock-aware quad generation algorithm to
more tightly couple our technique with existing video codecs.

3.4.2 Quad Proxy Packing. A quad proxy is defined as a plane in
view space, determined by casting rays from the corners of an 𝑛×𝑛
group of pixels. It is characterized by its size (𝑛), a normal vector, and
a reference point on the plane. At full precision, it can be represented
using a 32-bit unsigned integer and six 32-bit floating-point numbers,
though many of these values can be quantized to reduce storage.
Following the approach in QuadStream, we constrain the quad

proxy size to be powers of 2, up to 2048, allowing the size to be
encoded in 6 bits. The normal vector always faces the camera, so it
can be represented by two spherical coordinates and quantized into
two 8-bit values. The plane point is decomposed into x and y image
space coordinates along with a depth value. x and y are stored as
12-bit values, supporting resolutions up to 4096×4096, though we
practically use 11 bits for full HD 1920×1080. Depth is preserved

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Edward Lu and Anthony Rowe

normal Φ (8 bits) normal θ (8 bits) zero padding (16 bits)

size (6 bits) image space x coordinate (12 bits) image space y coordinate (12 bits)
flattened? (1 bit)

has alpha? (1 bit)
…

depth (32 bits) …

…

“Packed Quad Proxy” (96 bits)

Fig. 8. Data layout of a single packed quad proxy data structure. Each field
(e.g., depth, normal, etc.) is grouped across all structs, combined into a single
data block, and compressed using zstd.

at full 32-bit floating-point precision to ensure high-quality recon-
struction. Additionally, a single bit is reserved to indicate whether
the quad is flattened (whether or not to apply depth offsets). This
flattened bit, along with the size and xy values, are packed into a
single 32-bit integer, to ensure memory alignments. We also reserve
a bit to determine if the pixel has an alpha value or not.

This encoding enables a quad proxy to be stored using only three
32-bit values, cutting the memory footprint by more than half (see
Fig. 8). To ensure 32-bit alignment, 16 bits of zero padding are added,
which are effectively removed during final zstd compression. Unlike
QuadStream, which relies on a 24-bit offset per quad proxy to store
texture coordinates, our sequential texture stitching approach allows
us to derive the texture coordinates directly from a quad’s x and
y. We add a fixed header in our data payload that encodes the
number of quads per layer, enabling dynamic computation of texture
atlas offsets. As a result, our method requires only 80 bits per quad,
compared to QuadStream’s 103 bits.
We perform this quantization for each quad in every layer and

store the resulting structure as an array of values, meaning the
normal, depth, and flattened/size/xy fields are not interleaved. We
found that this produces higher compression ratios when we run
zstd and allows for optimized memory access on the client.

3.5 Temporal Compression
Sending a completely new set of quads for each frame is extremely
bandwidth-intensive. Instead, we can exploit the fact that much of
the scene geometry remains static, even when animations are run
or when new geometry is revealed. Mainly, the appearance across
frames changes mostly due to lighting and/or viewpoint changes.
By caching previously received quad proxies, the client can reuse
and render them alongside newly sent ones. Lighting changes can
be reflected by updating textures.
Caching many quad proxy sets over time is impractical due to

memory constraints. Instead, we cache only a single previous frame,
representing one prior view. Storing all layers from that frame can
also have a large memory overhead, so we cache only the visible
(first) layer, which accounts for approximately 60% of the total data
payload. We will call this set of quads a keyframe, or reference frame.
It serves as a complete set of visible quads from a past view and is
used as a reference for subsequent residual frames, which contain
updated and/or revealed geometry. This lets the client reuse cached
geometry and reduces the size of future data payloads.

pixel
centers

actual scene
geometry Poset

generated quads
(reference frame)

far clipping plane

updated quads
(residual frame)

additional quads
(residual frame)

t t+1

Poset Poset

Poset+1 Poset+1

(a) (b)

Fig. 9. (a): Given a G-Buffer, we generate a set of quads to approximate
the scene surfaces and send it to the client to reconstruct. We call this the
reference frame. (b): To account for scene updates, we use the reference
quads to fill the depth buffer as a mask and rerender the scene at the
reference camera pose, generating new quads where geometry has changed
(bottom left). To account for newly revealed geometry, we render the scene
at the new camera pose using a depth mask filled with the old mesh updated
with changed regions (bottom right). We send the client both the newly
generated quads from the reference camera view and the revealed quads
from the new camera view. We call this the residual frame.

3.5.1 Static Scenes. In static scenes, the server reconstructs the
cached reference frame and uses it as a mask to cull regions of the
G-Buffer where geometry has already been sent. By rendering the
reference frame’s mesh and pre-filling a depth mask, the server
generates new quads only for regions revealed by disocclusions.
Since this residual set of quads is sampled from an arbitrary new
viewpoint, its quads are not pixel-alignedwith those of the reference;
therefore, we apply the boundary expansion method described in
Sec. 3.3 to the residual quad set only. Despite the added quads, the
residual frame remains significantly smaller than a full reference
frame, typically less than half its size. Since the client caches only
a single reference frame, significant viewpoint shifts may lead to
noticeable deviations. To address this, the server can periodically re-
send new reference frames (e.g., every 5 frames or based on distance
and angle thresholds).

3.5.2 Dynamic Scenes. In dynamic scenes, static assumptions break
down because the content of a reference frame can change over
time. To address this, the server updates the cached reference frame
by sending additional quads that reflect the changes. Specifically,
the server creates an updated reference frame from the previous
viewpoint and compares it to the original reference frame. Using the
depth and stencil buffer, the server identifies regions of the scene
where the geometry has changed and generates new quads only
for those regions. This ensures that the residual frame size remains
small while accounting for dynamic content. See Fig. 1 and Fig. 9
for visualizations.

Thus, a full residual frame comprises three sets of quads: one set
corresponding to the updated geometry from the reference frame,
another set representing new geometry uncovered due to camera
movements, and the final set capturing hidden layers and wide
FOV. This allows the client to update its cached reference frame and
maintain an accurate representation of the scene within the viewcell
without needing the transmit a full frame from the server. In our
experiments, we find that the use of residual frames can result in

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

QUASAR: Quad-based Adaptive Streaming And Rendering • 9

0 0 0 0 1 1 3 3

0 0 0 0 1 1 3 3

0 0 0 0 2 2 2 2

0 0 0 0 2 2 2 2

4 4 5 5 2 2 2 2

4 4 5 5 2 2 2 2

…

local quad set

0 0 0 0 7 7 7 7

0 0 0 0 7 7 7 7

0 0 9 9 7 7 7 7

0 0 9 9 7 7 7 7

4 4 5 5 2 2 2 2

8 4 5 5 2 2 2 2

0 1 2 3 4 5 … 0 ╳ 2 ╳ 4 5 7 8 9 …

incoming reference
frame quads

incoming residual
frame quads

Quad Index Map
(reference frame only)

Quad Index Map
(reference + residual frame)

… …

…

(a) (b)

clear removed quads

Fig. 10. Client quad management. (a): Upon receiving a reference frame
(yellow), the client stores its quads in a local buffer and rasterizes their
indices into a 2D map. (b): On receiving a residual frame, new quads are
appended, and updated indices (green) are rasterized. Fully covered quads
are cleared and marked for replacement. Quads revealed from disocclusions
(magenta) are simply reconstructed and replaced in subsequent frames.
The client uses the Quad Index Map to select quads for visible layer recon-
struction. Fig. 1 shows an example visualization.

data rates 2–3× smaller than using only reference frames. To update
the color of the reference frame, we fit an additional image into our
texture atlas that corresponds to shading of revealed geometry.
Since residual frames encode only frame-to-frame differences,

our temporal compression technique is inherently agnostic to the
type of scene changes, enabling it to accommodate a wide range
of geometric updates, including rigged animations and deformable
meshes. However, in fully dynamic scenarios—for instance, ocean
simulations where a continuously moving water mesh occupies
the entire view—this approach offers limited benefit over refer-
ence frame-only streaming. Addressing such cases may require a
finer-grained residual representation, potentially by computing and
quantizing temporal differences in quad data structures rather than
transmitting entirely new quads for scene updates. Furthermore,
an interesting avenue for future research would involve the use of
quad-based motion compensation, similar to those used in 2D video
codecs, to enhance inter-frame compression.

3.6 Client Reconstruction
The client pre-allocates a buffer on the GPU that holds the local set
of quad proxies, a 16-bit RGBA texture that holds the local depth
offsets, and several vertex and index buffers for the layered mesh. It
also allocated a 2D buffer of 32-bit integers of size (width, height),
called the Quad Index Map, which tracks updates to the reference
frame by storing the index of the quad covering each pixel.
When a reference frame arrives, the client dispatches a compute

shader to overwrite the local quad buffer with incoming data. Using
the prior camera pose, quad indices are rasterized into the Quad
Index Map.

When a residual frame is received, its quads are appended to
the quad buffer rather than replacing it. It will rasterize the quads
corresponding to reference frame changes to update the Quad In-
dex Map, allowing for the integration of residual quads without
reprocessing the full reference frame. If any residual quads entirely
cover a reference quad, the corresponding entry in the local buffer
is marked as empty and will be replaced in a subsequent frame. This
enables memory reuse and prevents unbounded growth of the local
quad buffer. Additionally, quads corresponding to newly revealed
geometry due to viewpoint changes are reconstructed and marked
for replacement in subsequent frames. See Fig. 10 for a visualization.

A final compute shader reads the Quad Index Map to retrieve the
quads required to reconstruct the multi-layer mesh.

3.7 Transparency
Since depth peeling was originally designed to generate multiple lay-
ers for order-independent transparency, incorporating transparency
effects into our system is straightforward. An optional 4096×4096
8-bit texture atlas can be introduced to store alpha values, initial-
ized under the assumption that all surfaces are fully opaque. The
alpha atlas shares the same layout as the color atlas, ensuring easy-
to-compute texture coordinates. During the construction of the
G-Buffer layers, whenever a transparent pixel is encountered, its
corresponding alpha value is recorded in the alpha atlas, and an
alpha flag is set in the associated quad proxy data structure. If a
fragment in a previous layer is transparent, we retain the subsequent
hidden fragment rather than discarding it, ensuring its inclusion
during quad generation.
During the merging phase, if any of the four quads being pro-

cessed are marked as containing alpha, the resulting merged quad is
similarly flagged. During mesh reconstruction, if the client identifies
a quad as containing transparency, it retrieves the corresponding
alpha values for the quad’s covered pixels from the alpha atlas. This
mechanism supports quads with spatially varying alpha, enabling
mixed transparency within a single quad.

To support this functionality, the alpha atlas must be streamed to
the client, which can be accomplished by streaming an additional
H.264 video stream (which would only contain a luma channel) or by
compression using zstd combinedwith delta encoding, similar to the
scheme used by QuadStream. In practice, the additional bandwidth
overhead is minimal as most of our tested scenes contain only a
small number of transparent objects.

4 EVALUATION
We evaluate our system based on end-to-end performance, visual
quality, and data efficiency. Our method surpasses basic Asynchro-
nous TimeWarping (ATW) and depth-based MeshWarping (MW) in
visual quality while achieving a quality comparable to QuadStream
(QS). At the same time, it achieves a significant reduction in data
footprint by using EDP and temporal compression.

4.1 Experimental Setup
Our system is written using OpenGL 4.6 and tested on a desktopwith
an AMD Ryzen 9 7950X 16-Core Processor and an NVIDIA GeForce
RTX 4090. We report performance for a server and a simulated client

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Edward Lu and Anthony Rowe

(a) Robot Lab (RL) (b) Sun Temple (ST)

(c) Viking Village (VV) (d) San Miguel (SM)

Fig. 11. Scenes used in evaluations. Rendered with deferred shading.

running on the desktop, as well as for a client on a Meta Quest 3 VR
headset. The Quest 3 prototype is implemented using OpenGL ES
3.2 and OpenXR. The headset has a Snapdragon XR2 Gen 2 chipset
and renders using the OVR_multiview extension at a resolution of
1680×1760 per eye. The desktop client renders full HD resolution
(1920×1080) images. Most of the code is shared across platforms.

To evaluate real-world game scenes, we tested on the same envi-
ronments as QuadStream and added an additional scene (Sun Tem-
ple) to show robustness. We tested in Unity’s “Robot Lab” [Unity
Technologies 2018], UE4’s “Sun Temple” [Epic Games 2017], Unity’s
“Viking Village” [Unity Technologies 2022], and the “San Miguel”
atrium [McGuire 2017]. Each scene contains image-based lighting,
along with one directional light and four point lights, all of which
cast Percentage Closer Filtering (PCF) shadows. We implement frus-
tum culling for performance, but do not perform instancing and
all objects are rendered at their highest Level-of-Detail (LOD). To
show that we can support dynamic scenes, we added animations to
all scenes. The Robot Lab (0.47M triangles, 635 objects, moderate
depth complexity) is a medium-sized indoor scene with four dy-
namic objects, challenging thin structures such as railings, stairs,
and perforated walls. The Sun Temple (0.6M triangles, 1057 objects,
high depth complexity), another medium-sized scene, is a long nar-
row hallway with open views, stairs, sharp-cornered columns, and
rotating and flying angel statues. The Viking Village (4.3M triangles,
1266 objects, high depth complexity), a large outdoor scene, has
animated dragon masts on buildings, rotating skull-adorned sticks,
flying swords, and rotating rocks. Its challenges include detailed
roofs and overlapping buildings. San Miguel (9.9M triangles, 1600
objects, high depth complexity), a large partly indoor scene, con-
tains very detailed individually modeled plants, dense foliage, and
many thin moving chairs. See Fig. 11 for a still frame of each scene.

4.1.1 Baselines. We compare our approach to three previous re-
mote rendering reprojection schemes. (1) ATW [van Waveren 2016]
warps a received frame along a plane. It is simple to implement
and has the least computational overhead. (2) MeshWarp [Mark
et al. 1997] generates a mesh from a G-Buffer. It is also simple to

Table 1. Average absolute error of client pose prediction under simulated
network latencies of 20 ms (with ±10 ms jitter) and 50 ms (with ±20 ms
jitter). Errors are reported as mean ± std / max.

Scene Errors w/ Pred Errors w/o Pred
Position Rotation Position Rotation

20 ± 10 ms Latency
RL 9 ± 6 / 46 cm 0.9 ± 1.3 / 14.7° 32 ± 12 / 76 cm 2.3 ± 3.0 / 22.7°
ST 7 ± 4 / 23 cm 0.6 ± 1.3 / 14.4° 25 ± 7 / 50 cm 1.5 ± 2.7 / 21.1°
VV 7 ± 5 / 23 cm 0.4 ± 0.8 / 8.6° 27 ± 9 / 45 cm 1.0 ± 1.6 / 13.3°
SM 2 ± 2 / 14 cm 0.6 ± 0.8 / 8.5° 9 ± 4 / 20 cm 1.8 ± 1.8 / 14.4°

50 ± 20 ms Latency
RL 53 ± 20 / 122 cm 2.4 ± 3.2 / 26.1° 64 ± 24 / 142 cm 4.7 ± 5.5 / 37.6°
ST 42 ± 12 / 87 cm 1.5 ± 2.7 / 21.2° 51 ± 15 / 96 cm 3.1 ± 5.0 / 29.4°
VV 45 ± 15 / 84 cm 1.2 ± 1.8 / 12.8° 56 ± 18 / 88 cm 2.1 ± 2.9 / 18.0°
SM 15 ± 6 / 39 cm 1.7 ± 1.8 / 14.6° 19 ± 8 / 38 cm 3.6 ± 3.1 / 19.2°

implement and can be network-adaptive by tuning the depth map
resolution. (3) QuadStream [Hladky et al. 2022] uses multiple G-
Buffers at different viewpoints to generate quads that are quantized
and streamed to a client, similar to our approach. Due to the lack
of open-source implementations available, we approximate Quad-
Stream by adapting our existing code to generate quads, rather than
replicating the original method exactly. Our QuadStream leverages
multiple camera views and pre-fills a depth mask using quads gener-
ated from other views, following a strategy similar to that described
in their paper [Hladky et al. 2022].
Pure triangle streaming with texture-space shading systems—

such as those in [Hladky et al. 2021, 2019; Mueller et al. 2018]—also
lack open-source implementations, making direct comparisons diffi-
cult. Instead, we provide a conceptual discussion. Triangle streaming
transmits raw triangle data to the client, offering high geometric
fidelity, latency masking via potentially visible set calculations, and
caching for static geometry. However, it scales poorly with scene
complexity, leading to higher data rates and reduced client perfor-
mance. Although decimation can help, real-time mesh simplification
remains limited. Shading quality can also suffer due to difficulties
in packing numerous colored triangle-shaped patches into a single
video frame. As shown in [Hladky et al. 2022], such systems even
fail to operate in scenes with high model complexity. In contrast,
quad-based methods leverage geometric proxies, reducing both data
and shading rates while maintaining visual quality. Compared to
prior texture-space systems, they better exploit screen-space coher-
ence and achieve smaller payloads through more effective quanti-
zation. As scene complexity grows with virtual geometry systems
like Nanite [Karis et al. 2021], we believe quad-based representa-
tions offer a more scalable solution, although triangle streaming
still remains viable for simpler scenes.

4.1.2 Configuration of parameters. For ATW, in out-of-frame re-
gions, we apply a closest-pixel in-fill instead of displaying a black
border. This approach slightly enhances visual quality and helps
hide sharp edges at frame boundaries, but produces a smearing-like
artifact. ATW transmits a full 1920×1080 resolution video stream.
For MeshWarp, we report performance using 32-bit depth maps

with vertical FOVs of 60° (matching the client) and 120°. Doubling
the FOV better captures out-of-frame regions but lowers central
resolution, so we double the resolution to 3840×2160 for 120°. Depth

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

QUASAR: Quad-based Adaptive Streaming And Rendering • 11

Table 2. Server computation times. Measured on a high-end desktop. For ATW and MW, Render is the time for the server to render the scene and store the
results for streaming. For QS and Ours, G-Buffers is the total amount of time to render G-Buffers for any step of the method.Quads is the total amount of time
to fit the initial set of dense quads proxies from the G-Buffers and Merge is the amount of time it takes to merge and simplify the quads. Encode is the total
amount of time to perform zstd compression. While we report total compression times, the process itself can be pipelined and run in a background thread.

Scene & ATW MW (120°) QuadStream Ours (Reference Frames) Ours (Residual Frames)
VC Size Render Render Encode G-Buffers Quads Merge Encode G-Buffers Quads Merge Encode G-Buffers Quads Merge Encode
RL (25cm) 3.05 ms 4.32 ms 4.09 ms 23.51 ms 5.78 ms 5.36 ms 80.58 ms 13.24 ms 3.73 ms 1.12 ms 35.65 ms 20.15 ms 5.14 ms 9.38 ms 39.82 ms
RL (50cm) 3.05 ms 4.32 ms 4.09 ms 23.43 ms 6.01 ms 5.62 ms 80.23 ms 12.98 ms 3.76 ms 1.20 ms 35.44 ms 19.73 ms 5.20 ms 9.45 ms 39.39 ms
RL (100cm) 3.07 ms 4.31 ms 4.23 ms 23.87 ms 6.42 ms 6.43 ms 85.69 ms 1.15 ms 3.84 ms 1.33 ms 35.28 ms 20.07 ms 5.34 ms 7.77 ms 39.26 ms
ST (25cm) 6.17 ms 7.43 ms 4.18 ms 40.21 ms 5.69 ms 3.09 ms 71.50 ms 23.97 ms 3.71 ms 1.40 ms 33.70 ms 37.60 ms 5.19 ms 4.20 ms 38.11 ms
ST (50cm) 6.17 ms 7.43 ms 4.18 ms 40.43 ms 5.94 ms 3.25 ms 74.69 ms 23.66 ms 3.83 ms 1.47 ms 35.24 ms 37.25 ms 5.30 ms 4.32 ms 39.88 ms
ST (100cm) 6.19 ms 7.46 ms 4.05 ms 38.95 ms 6.40 ms 3.29 ms 108.12 ms 24.02 ms 4.09 ms 2.30 ms 36.05 ms 37.56 ms 5.50 ms 3.80 ms 40.57 ms
VV (25cm) 2.59 ms 3.98 ms 4.06 ms 19.63 ms 5.48 ms 2.48 ms 125.28 ms 10.57 ms 3.35 ms 2.46 ms 41.30 ms 16.42 ms 4.59 ms 8.76 ms 43.64 ms
VV (50cm) 2.59 ms 3.98 ms 4.06 ms 19.94 ms 5.75 ms 2.67 ms 129.20 ms 10.52 ms 3.53 ms 3.11 ms 42.36 ms 16.43 ms 4.74 ms 9.31 ms 44.78 ms
VV (100cm) 2.55 ms 4.00 ms 4.13 ms 20.41 ms 6.20 ms 2.86 ms 135.51 ms 10.77 ms 3.81 ms 2.49 ms 43.73 ms 16.73 ms 5.01 ms 10.39 ms 45.94 ms
SM (25cm) 9.73 ms 10.06 ms 6.74 ms 67.13 ms 6.74 ms 2.35 ms 110.27 ms 38.59 ms 4.28 ms 1.11 ms 50.38 ms 59.24 ms 5.70 ms 18.87 ms 53.07 ms
SM (50cm) 9.73 ms 10.05 ms 6.74 ms 67.57 ms 7.14 ms 2.57 ms 115.71 ms 38.55 ms 4.43 ms 1.73 ms 49.21 ms 59.40 ms 5.86 ms 19.71 ms 51.69 ms
SM (100cm) 9.84 ms 10.06 ms 6.95 ms 69.12 ms 7.74 ms 2.92 ms 122.78 ms 38.65 ms 4.61 ms 2.20 ms 49.33 ms 59.26 ms 6.00 ms 22.26 ms 51.69 ms

maps are compressed with a BC4-like 8×8 block scheme [Koniaris
et al. 2018], reducing the size by 8×, followed by zstd compression.

For QuadStream, we use the same parameter values as in the orig-
inal paper, except for the proxy flattening threshold (𝛿flatten), which
we set to 0.05 to reduce the amount of depth offsets. Specifically, we
used a depth threshold (𝛿max) of 10−4 and a plane similarity thresh-
old (𝛿sim) of 0.1. Around 90–95% of the depth offsets are empty. We
follow the original viewcell sampling order—center view, then front
and back corners clockwise—and generate a wide FOV proxy set
at 120°, rendered at 1280×720. We also apply our “coarse merging”
heuristic in the first merge pass, which is conceptually equivalent to
the “quad splitting” strategy described in the original paper. Binary
quad metadata is compressed using zstd.
For our method, to balance the data rate and visual quality, we

adopt more liberal parameter settings. We set 𝛿flatten to 0.2 and
𝛿sim to 0.5 to further reduce the number of depth offsets. We apply
coarse quad merging during the first 3 merging passes, essentially
downsampling the G-Buffer by 8× in non-edge regions. We also
include a 120° wide FOV proxy at half the visible view resolution
(960×520). For EDP, we use a connectivity depth threshold of 0.001.
For each EDP hidden layer and for the wide FOV, we relax 𝛿flatten
and 𝛿sim by 10× and apply course merging 4 times, as these views
occupy a smaller portion of the client’s view and can tolerate more
aggressive simplification. For temporal compression, we insert a
reference frame every 5 frames; otherwise, we send residual frames.

4.1.3 Experiments. For each scene, we evaluate the performance
along a camera trace consisting of 1500 poses. The server operates
at 30 FPS, and we simulate two network conditions: 20 ms (“local”)
and 50 ms (“cloud”) one-way delays. For 20 ms, we add ± 10 ms
of uniformly random network jitter, while for 50 ms we add ±
20 ms. These delays represent one-way latency (half the round-
trip time), meaning the server receives client poses, and the client
receives server frameswith corresponding delays. The desktop client
runs at 60 FPS and the headset client at 72 FPS; the client frame
rate is decoupled from the server’s. Each method is evaluated by
running all four traces at the tested latency, collecting 1500 frames
per trace, which are then compared against the corresponding 1500
ground truth frames using perceptual similaritymetrics. Tomaintain

synchronization, we ensure that the server and client rates are
matched so that the animations remain aligned. If the server cannot
maintain 30 FPS, we virtually slow the time proportionally across all
reprojection methods to preserve frame correspondence. However,
all run-time performance results are reported in actual (wall-clock)
time. For each network delay setting, we test with viewcell sizes of
25, 50, and 100 cm.

4.1.4 Pose Prediction. We perform kinematic pose prediction on
the server using the client’s translational and angular velocity and
acceleration. While more advanced prediction methods exist, we opt
for a simpler approach to reduce system complexity. Tab. 1 reports
the average absolute pose errors from our prediction. The table
shows that at lower latency and jitter, basic kinematic pose predic-
tion performs well. However, these results fall short of the practical
limits—approximately 5 cm and 5°—reported in prior work [Shotton
et al. 2013], demonstrating the need for reprojection to maintain
visual consistency. Under higher latency and jitter, prediction accu-
racy degrades significantly, introducing instability. To mitigate this,
we apply pose smoothing using a Savitzky-Golay filter for 50±20 ms
latency only, which reduces error. The errors for 50±20 ms reported
in the table are after filtering is applied.
These increases in pose error due to latency and jitter will di-

rectly affect visual quality, leading to method-specific artifacts. For
ATW, high pose error increases translational mismatches and out-of-
frame artifacts. In MW, higher pose error causes more disocclusion
events, amplifying “rubber sheet” artifacts. For QS and our method,
increased pose error raises the risk of the client moving outside
the viewcell or undergoing extreme rotations, leading to visible
reconstruction gaps and reduced resolution in out-of-frame regions.
Larger viewcells or higher resolution wide FOV G-Buffers can help
mitigate these artifacts at the cost of increasing data rates.

4.2 End-to-End Performance
The server performance results are shown in Tab. 2, and the client
performance is shown in Tab. 3. The timing measurements reflect
the wall-clock execution time of each major processing step for
all methods. Server results were obtained on a high-end PC, while
client performance was estimated by replaying saved camera frames

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Edward Lu and Anthony Rowe

Table 3. Client computation times. Several frames were saved from our traces and loaded on aQuest 3 VR headset. Native shows the performance of the
scene rendering locally on the headset, without remote rendering. Render is the amount of time it takes the client to render a frame. Decode is the amount
of time it takes zstd to decompress the data payload received. Mesh is the amount of time required to fill the vertex and index buffers using the received
information.Quads is the amount of time it takes to update local quad buffers (either filling buffers for reference frames or updating/appending quads for
residual frames).

Scene & Native ATW MW (120°) QuadStream Ours (Reference Frames) Ours (Residual Frames)
VC Size Render Render Decode Mesh Render Decode Mesh Render Decode Quads Mesh Render Decode Quads Mesh Render
RL (25cm) 123.8 ms 0.01 ms 5.03 ms 0.09 ms 95.30 ms 13.45 ms 0.29 ms 18.94 ms 11.73 ms 0.40 ms 0.16 ms 12.68 ms 10.04 ms 0.45 ms 0.20 ms 15.10 ms
RL (50cm) 122.9 ms 0.01 ms 5.37 ms 0.07 ms 99.42 ms 13.78 ms 0.29 ms 18.95 ms 11.56 ms 0.40 ms 0.16 ms 13.60 ms 10.91 ms 0.45 ms 0.20 ms 15.23 ms
RL (100cm) 123.4 ms 0.01 ms 5.50 ms 0.09 ms 97.20 ms 13.89 ms 0.31 ms 21.41 ms 12.39 ms 0.40 ms 0.16 ms 14.06 ms 10.75 ms 0.45 ms 0.21 ms 15.78 ms
ST (25cm) 216.7 ms 0.01 ms 5.21 ms 0.08 ms 97.34 ms 12.14 ms 0.28 ms 21.89 ms 10.98 ms 0.47 ms 0.15 ms 13.01 ms 10.44 ms 0.49 ms 0.20 ms 16.01 ms
ST (50cm) 214.2 ms 0.01 ms 5.18 ms 0.08 ms 96.24 ms 12.81 ms 0.28 ms 23.72 ms 10.05 ms 0.47 ms 0.16 ms 15.21 ms 10.44 ms 0.49 ms 0.18 ms 16.17 ms
ST (100cm) 220.8 ms 0.01 ms 5.61 ms 0.10 ms 99.10 ms 12.95 ms 0.28 ms 26.84 ms 10.59 ms 0.47 ms 0.16 ms 15.98 ms 10.40 ms 0.49 ms 0.20 ms 16.66 ms
VV (25cm) 127.8 ms 0.01 ms 5.93 ms 0.09 ms 95.82 ms 15.78 ms 0.29 ms 21.07 ms 13.44 ms 0.40 ms 0.18 ms 13.12 ms 10.07 ms 0.45 ms 0.20 ms 15.77 ms
VV (50cm) 125.7 ms 0.01 ms 5.99 ms 0.10 ms 96.52 ms 15.81 ms 0.30 ms 22.78 ms 13.44 ms 0.40 ms 0.19 ms 14.54 ms 10.40 ms 0.45 ms 0.19 ms 15.94 ms
VV (100cm) 128.6 ms 0.01 ms 5.91 ms 0.13 ms 97.98 ms 15.86 ms 0.32 ms 24.08 ms 13.35 ms 0.40 ms 0.20 ms 14.90 ms 10.14 ms 0.45 ms 0.20 ms 16.42 ms
SM (25cm) 382.0 ms 0.01 ms 5.89 ms 0.08 ms 94.39 ms 14.67 ms 0.38 ms 27.44 ms 12.34 ms 0.45 ms 0.19 ms 18.95 ms 10.02 ms 0.47 ms 0.19 ms 18.53 ms
SM (50cm) 387.8 ms 0.01 ms 6.05 ms 0.08 ms 92.90 ms 14.85 ms 0.38 ms 28.18 ms 12.23 ms 0.45 ms 0.19 ms 19.88 ms 10.09 ms 0.47 ms 0.19 ms 18.69 ms
SM (100cm) 383.3 ms 0.01 ms 5.92 ms 0.09 ms 92.64 ms 14.90 ms 0.39 ms 28.51 ms 12.19 ms 0.45 ms 0.19 ms 19.13 ms 10.19 ms 0.47 ms 0.19 ms 18.16 ms

on a Quest 3 VR headset. Note that CPU-bound zstd compression
and decompression times are reported, but these operations can be
pipelined and offloaded to a background thread.We report the timing
results for MeshWarp at 120° FOV only, as it consistently produced
higher visual quality compared to 60° FOV in our evaluations.

4.2.1 Server performance. As shown in Table 2, ATW achieves the
shortest runtime, mainly constrained by rendering time. MeshWarp
follows, incurring additional overhead from rendering a higher-
resolution image and exporting the depth map for streaming.

QuadStream has the highest overall runtime among the methods.
Our implementation achieves performance comparable to that of
the original paper, with G-Buffer creation accounting for the ma-
jority of processing time. Since QuadStream requires rendering 10
views (center, eight corner views, and a wide-angle view), it incurs
significant overhead. The center view is the most expensive, con-
tributing approximately 30% of the G-Buffer creation time due to a
high number of non-empty pixels. The wide FOV view follows at
around 20%, while each corner view takes progressively less time
as most fragments are early-discarded by depth testing.
We achieve significantly faster G-Buffer creation and quad gen-

eration times compared to QuadStream, enabled by two key opti-
mizations. First, we perform depth peeling within a single render
pass, avoiding the overhead of multiple passes per layer. Second, by
capturing entire hidden layers and employing more aggressive quad
merging, we reduce the overall number of quads that need to be
processed, thereby accelerating quad generation. As shown in Fig. 2,
we report compute times for both reference and residual frames.
Residual frames incur higher G-Buffer creation times due to an ad-
ditional render pass used to re-render the previous reference frame
and capture scene updates. Furthermore, residual frames require the
creation of two additional sets of quads, which increases the time
required for quad generation and merging. However, the resulting
reduction in data size leads to balanced overall performance.

4.2.2 Client performance. Although our traces are emulated on
a high-end server, we report client performance metrics collected
directly from a Meta Quest 3 VR headset to better reflect real-world

execution times. That said, all methods achieve over 1000 FPS on
the simulated client when run on the server.
Tab. 3 reports measured client-side performance. As expected,

rendering scenes directly on the client yields the lowest framerate,
highlighting the benefits of offloading rendering to the server.

Among the tested methods, ATW achieves the best performance
due to its very minimal computational overhead, requiring only a
single post-processing pass. In contrast, MeshWarp performs sub-
optimally due to the high-resolution mesh generated from a 4K
depth map, which is costly to rasterize on the client. While not
included in the reported results, we found that downsampling the
mesh to 960×540 enables the client to reach 72 FPS, but with a sig-
nificant reduction in visual quality. Similar to compression, zstd
decompression can be offloaded to a background thread on the CPU.
QuadStream’s client-side performance is efficient across both

mesh generation and rendering. Mesh creation consistently takes
approximately 0.3–0.4 ms across all tested scenes, while rendering
the simplified quad geometry completes in 19–29 ms, corresponding
to 34–53 FPS. This efficiency stems from the reduced geometric
complexity achieved through quad simplification, making it signifi-
cantly lighter than the high-resolution meshes used in MeshWarp.
However, during evaluation, we observed instances of local repro-
jection applied by the headset, particularly in the San Miguel scene
to ensure a stable framerate.
Our technique improves client-side performance by promoting

increased quad merging, which reduces the number of quads ren-
dered per frame and, in turn, lowers decompression and rendering
overhead. However, we incur some minor overhead updating local
data structures to handle residual frames. Our frame times range
from roughly 13 to 20 ms, corresponding to 50–77 FPS. For residual
frames, additional reconstruction passes are required to process
both modified reference quads and newly revealed quads, leading to
slightly increased mesh generation times and additional overhead
in updating local data structures compared to reference frames.

4.3 Visual Quality vs. Data Rate
We evaluated image quality using PSNR, SSIM, and FLIPmetrics [An-
dersson et al. 2020], with quantitative results summarized in Tab. 4.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

QUASAR: Quad-based Adaptive Streaming And Rendering • 13

Table 4. Image quality comparisons of our system compared to baseline methods at simulated network latencies of 20 ms (with 10 ms jitter) and 50 ms (with
20 ms jitter) for 1920×1080 resolution client renderings. Results are reported as the average quality of all the images rendered using each method compared to
a ground truth image (with “0 ms latency”) for a 1500 image trace. The results for QuadStream and our technique are shown for three different viewcell sizes
to highlight the effect of viewcell size on visual quality. This figure should be cross-referenced with Fig. 12 to show the trade-off between quality and data rate.

Method & Robot Lab Sun Temple Viking Village San Miguel
VC Size PSNR↑ SSIM↑ FLIP↓ PSNR↑ SSIM↑ FLIP↓ PSNR↑ SSIM↑ FLIP↓ PSNR↑ SSIM↑ FLIP↓

20 ± 10 ms Latency
ATW 24.11 0.555 0.140 24.94 0.648 0.135 25.42 0.698 0.116 22.89 0.563 0.144
MW (60°) 28.09 0.863 0.046 31.89 0.943 0.039 29.20 0.925 0.041 26.30 0.874 0.063
MW (120°) 30.06 0.915 0.044 30.85 0.911 0.040 28.44 0.890 0.047 25.51 0.812 0.068
QS (25cm) 32.66 0.926 0.034 34.29 0.949 0.031 29.71 0.931 0.039 27.77 0.874 0.053
QS (50cm) 32.67 0.925 0.034 34.27 0.948 0.031 29.57 0.922 0.040 27.57 0.871 0.054
QS (100cm) 31.86 0.919 0.035 34.24 0.946 0.032 29.34 0.916 0.042 27.36 0.868 0.056
Ours (25cm) 32.17 0.920 0.034 34.22 0.947 0.032 30.92 0.932 0.036 28.71 0.882 0.050
Ours (50cm) 32.10 0.919 0.034 34.04 0.947 0.032 30.90 0.931 0.036 28.66 0.882 0.050
Ours (100cm) 32.63 0.923 0.034 33.80 0.946 0.032 30.82 0.930 0.036 28.65 0.882 0.050

50 ± 20 ms Latency
ATW 18.82 0.380 0.264 18.44 0.476 0.280 20.39 0.513 0.225 18.70 0.353 0.261
MW (60°) 24.98 0.820 0.070 27.82 0.883 0.058 25.74 0.899 0.060 21.96 0.744 0.105
MW (120°) 26.72 0.872 0.062 28.49 0.914 0.056 25.52 0.861 0.063 23.13 0.792 0.100
QS (25cm) 28.69 0.901 0.045 30.22 0.931 0.042 28.23 0.906 0.046 26.15 0.850 0.062
QS (50cm) 30.02 0.906 0.040 32.00 0.937 0.037 28.74 0.908 0.044 25.97 0.846 0.064
QS (100cm) 30.47 0.904 0.040 32.33 0.938 0.036 28.78 0.905 0.045 25.37 0.840 0.067
Ours (25cm) 28.49 0.900 0.046 29.25 0.925 0.047 28.88 0.914 0.044 27.09 0.858 0.059
Ours (50cm) 29.94 0.902 0.042 30.94 0.930 0.041 29.65 0.917 0.041 27.38 0.860 0.057
Ours (100cm) 31.11 0.907 0.039 32.16 0.933 0.037 30.00 0.917 0.040 27.36 0.861 0.057

Robot Lab Sun Temple Viking Village San Miguel

A
T
W

A
T
W

A
T
W

A
T
W

M
W

60
°

M
W

60
°

M
W

60
°

M
W

60
°

M
W

12
0°

M
W

12
0°

M
W

12
0°

M
W

12
0°

Q
S 25

cm

Q
S 25

cm

Q
S 25

cm

Q
S 25

cm

Q
S 50

cm

Q
S 50

cm

Q
S 50

cm

Q
S 50

cm

Q
S 10

0c
m

Q
S 10

0c
m

Q
S 10

0c
m

Q
S 10

0c
m

O
ur

s 2
5c

m

O
ur

s 2
5c

m

O
ur

s 2
5c

m

O
ur

s 2
5c

m

O
ur

s 5
0c

m

O
ur

s 5
0c

m

O
ur

s 5
0c

m

O
ur

s 5
0c

m

O
ur

s 1
00

cm

O
ur

s 1
00

cm

O
ur

s 1
00

cm

O
ur

s 1
00

cm

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

D
at

a
Ra

te
 (M

bp
s)

5 5 5 584 80 97 107246 233 244 349

1602

944

3132

4125

1740

1050

3365

4581

1961

1225

3741

5192

152 92 223
607

156 99 238
619

159 108 253
635

Geometry
Texture

Fig. 12. Average data rates of all methods for each trace in our evaluations. Results for QuadStream and our technique are shown for three different viewcell
sizes to highlight the effect of viewcell size on data rate. Reported values are the average of data rates across both tested latencies. This figure should be
cross-referenced with Tab. 4.

Furthermore, Fig. 12 presents the data rates for each method across
all evaluated traces, and Fig. 13 provides visual comparisons. Our
supplemental video includes trace recordings along with error maps
to provide a qualitative comparison.
As shown in Tab. 4, ATW has the lowest image quality among

the evaluated methods, primarily due to translation mismatches
and out-of-frame artifacts. However, it achieves the smallest data
rate, as it avoids streaming any geometry or additional views. This

efficiency comes at the cost of significantly degraded visual fidelity—
ATW performs an order of magnitude worse in FLIP and reports
the lowest PSNR and SSIM for both latencies tested.

MeshWarp with a 120° FOV provides good image quality, due to a
higher shading rate in peripheral regions compared to the 60° FOV
configuration. However, doubling both FOV and resolution sub-
stantially increases data rates by around 3–4×. MeshWarp’s visual
quality is limited by “rubber sheet” artifacts and the absence of

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Edward Lu and Anthony Rowe

Viking Village

O
ur

s
no

 c
oa

rs
e

m
er

ge
𝜹 s

im
=0

.5
, 𝜹

fla
tte

n=
0.

2

FLIP Error

O
ur

s
3⨉

 c
oa

rs
e

m
er

ge

𝜹 s
im

=0
.5

, 𝜹
fla

tte
n=

0.
2

O
ur

s
3⨉

 c
oa

rs
e

m
er

ge

𝜹 s
im

=0
.5

, 𝜹
fla

tte
n=

0.
2

O
ur

s
3⨉

 c
oa

rs
e

m
er

ge

𝜹 s
im

=5
.0

, 𝜹
fla

tte
n=

0.
2

0.0397

0.0396

0.0395

0.0394

4.66 MB

2.34 MB

17.46 MB

38.43 MB

FLIP ErrorRobot Lab

0.0418

0.0420

0.0423

0.0543

33.51 MB

1.74 MB

3.31 MB

1.31 MB

O
ur

s
3⨉

 c
oa

rs
e

m
er

ge

𝜹 s
im

=0
.5

, 𝜹
fla

tte
n=

10
-3 0.042212.04 MB

0.04631.86 MB

A
T

W
19

20
⨉

10
80

0.28080 MB0.02950 MB

M
es

hW
ar

p
38

40
⨉

10
80

12
0°

 F
O

V

0.06520.97 MB0.05950.77 MB

Q
ua

dS
tr

ea
m

8
vi

ew
s +

 w
id

e
FO

V
𝜹 s

im
 =

 0
.1

, 𝜹
fla

tte
n=

0.
5 0.043710.42 MB0.04598.23 MB

Fig. 13. Top half: Visual comparisons of tested methods from a novel view. MB denotes the per-frame geometry size (note that ATW does not send geometry).
Our data size is shown as the size of a reference frame. Bottom half: Algorithm parameters and their impact on quality and data size. We can adjust the
level of quad merging by adjusting the plane similarity threshold (𝛿sim), the flattening threshold (𝛿flatten), and the amount of simplify passes we apply coarse
merging (which essentially downsamples the G-Buffer in non-edge regions).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

QUASAR: Quad-based Adaptive Streaming And Rendering • 15

25 75 125 175 225 275 325 375 425 475 525 575 625 675
Data Rate (Mbps)

0.030

0.055

0.080

0.105

0.130

0.155

FL
IP

 E
rr

or

higher merging thresholds lower merging thresholds

Fig. 14. Effect of quad merging on visual quality and data rate for the Robot
Lab scene (50 cm viewcell). Trials vary plane similarity and flattening thresh-
olds, impacting geometric resolution and compression efficiency. Parameter
values between adjacent points differ by a factor of 2. The chosen operating
point (𝛿sim=0.5 and 𝛿flatten=0.2) is highlighted.

disocclusion events, resulting in lower perceptual quality compared
to both QuadStream and our method. Furthermore, its quality sig-
nificantly degrades with higher latency as disocclusions become
more frequent and pronounced.

QuadStream offers high visual quality, outperforming ATW and
MeshWarp, particularly under higher latency conditions. Its robust-
ness stems from its use of high-resolution geometry and explicit
handling of disocclusions, which preserve detail and visual consis-
tency across frames. While MeshWarp performs well at low latency,
the lack of disocclusions leads to noticeable quality drops as latency
increases. At low latency, QuadStream viewcell size has limited
influence on visual quality, as smaller viewcells sufficiently cover
potential viewpoints. In contrast, at higher latency, increasing the
viewcell size improves visual quality by covering a wider range
of potential viewpoints, mitigating the effects of frame delay. Un-
fortunately, QuadStream demands significantly higher data rates,
often an order of magnitude greater than other methods, exceeding
1 Gbps for nearly all traces.

Our method delivers visual quality comparable to, and often ex-
ceeding, QuadStream, while significantly reducing bandwidth usage.
This is due to improved reconstruction quality and more effective
capture of potentially visible content. Despite employing aggressive
downsampling to improve efficiency, we observe a minimal impact
on perceived visual quality, as texture detail tends to mask geometric
approximations. Our approach also demonstrates robustness across
varying network latencies, with only minor degradations in quality
at higher latencies. Similarly to QuadStream, larger view cells at
low latency contribute to marginal quality improvements, since
small view cells capture all potential client viewpoints. However, in
our method, increasing the viewcell size tends to expose additional
quads on hidden surfaces, which in turn facilitates greater merg-
ing opportunities; as a result, the associated bandwidth increase
is small. Our bandwidth usage is modest for some scenes, but can
be higher for more complex ones, ranging from 92 to 635 Mbps,
depending on scene complexity. In general, our method maintains a
balance between visual fidelity, latency masking, and data efficiency,
outperforming all other approaches in overall performance.

4.3.1 Adapting to Fit the Best QoE. Geometry decimation plays a
key role in balancing visual quality and data efficiency. The lower

140 165 190 215 240 265
Data Rate (Mbps)

0.04045

0.04050

0.04055

0.04060

0.04065

0.04070

FL
IP

 E
rr

or

more coarse merge passes (to 5×) less coarse merge passes (to 0×)

Fig. 15. Effect of applying our coarse merging heuristic on visual quality
and data rate for the Robot Lab scene (50 cm viewcell). The chosen operating
point (3× coarse merging) is highlighted. As we increase the number of
coarse merge passes, note that FLIP error exhibits minimal improvement
(∼0.0002 from 0 to 5×), while data rate undergoes a significant reduction.

0.03

0.04

0.05

0.06

Fl
ip

 E
rr

or

Viewcell Size w/ Data Rate
10 cm (138.72 Mbps)
100 cm (150.24 Mbps)

600 650 700 750 800 850
Frame #

2.0

3.0

4.0
Sp

ee
d

(m
/s

)

Client Speed
Fluctuates

Fig. 16. Effect of viewcell size on latency masking for our method. For this
trace (Robot Lab with 50 ± 20 ms delay), rapid viewpoint changes between
frames 635–800 are better handled with a larger viewcell, reducing FLIP
error but increasing data transmission.

half of Fig. 13 visualizes how the varying quad merging thresholds
impact image quality. Higher thresholds yield better compression
but can introduce artifacts, while lower thresholds preserve detail at
the cost of increased bandwidth. Fig. 14 shows the quality-data rate
trade-off of our method. Note that we jointly vary plane similarity
and flattening thresholds, as they are interdependent. The figure
shows that the impact of quad merging on visual quality follows
a roughly exponential decay, and we select our operating point
near the crossover where quality begins to degrade sharply. Fig. 15
highlights the effect of our course merging strategy. From this, we
choose to apply coarser merging in the first three simplify passes,
around where improvements in data rate start to show diminishing
returns. Adapting these decimation parameters dynamically to adapt
to network conditions is a promising direction for future work.
As shown in Fig. 12, increasing the viewcell size in our system

results in only a modest increase in data rate, ranging from 4 to 30
Mbps, even with a 4× enlargement of the view sphere. In contrast,
QuadStream exhibits a significantly steeper increase—ranging from
150 to 1000 Mbps—as the view box size grows. This highlights view-
cell size as a key factor in balancing latency masking, visual quality,

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

16 • Edward Lu and Anthony Rowe

and bandwidth. Fig. 16 demonstrates that dynamically adjusting
the viewcell size—rather than using a static configuration—can help
mitigate latency during rapid user motion, albeit with increased data
usage. This underscores a fundamental trade-off between latency
robustness and bandwidth efficiency, suggesting adaptive viewcell
sizing as a promising strategy for optimizing performance based on
application needs (see Sec. 5).

5 DISCUSSION
Geometry-based streaming approaches offer a number of benefits
for remote rendering. First, they are scalable, as future increases in
VR/AR display resolutions will drive up demand for pixel shading,
necessitating the need for remote rendering; meanwhile, vertex pro-
cessing can remain tied to the transmitted geometry, which can be
quantized or decimated with less impact on visual quality. In addi-
tion, they support future varifocal VR displays [Ebner et al. 2022;
Qin et al. 2023], enabling clients to render multiple focus planes
locally at low latency. Compared to transmitting quantized trian-
gle primitives, proxy-based geometry streaming can significantly
reduce data rates, making real-time streaming more feasible under
real-world network conditions. Our work is a step toward making
these techniques practical with realistic interconnects.

QoE controls are an important factor to consider when designing
new representations for streaming. We show that we can decimate
geometry without much loss in quality and can more efficiently com-
press existing quad-based streaming representations. This is critical
when considering that geometry data is often masked by texture
quality, and yet, due to its complex nature, it often consumes con-
siderable bandwidth. Our approach enables an application designer
to define trade-offs based on the characteristics of their application
that could downsample textures, geometry, and/or viewing volume
size to best fit their application. For example, a high-speed driving
game might prefer to increase headbox size to better mask latency,
while a less dynamic game might bias the system towards texture
and geometry quality. In the worst case, our system can simply
degrade to ATW or even MeshWarp if bandwidth is not available.

5.0.1 Limitations and future work. Our quad-based representation,
similar to QuadStream, approximates curved edges using square-
shaped quads, leading to aliasing-like effects near object boundaries.
While client-side anti-aliasing can help reduce these artifacts, they
come at a performance cost. Accurately representing smooth edges
remains a key challenge for quad-based methods.
Entirely gap-free reconstruction can be challenging, especially

when the client deviates significantly from the center view. In these
cases, small gaps may appear, occasionally causing flickering ar-
tifacts when applying residual frames, particularly in scenes with
complex occluders. These gaps can lead to quads from the wide
FOV set appearing in the main view, resulting in occasional visual
artifacts. To address this, we introduce a boundary expansion step
during residual quad generation to help fill gaps and suppress such
issues, though its effectiveness may be limited in certain cases.
Our method struggles with view-dependent effects like reflec-

tions, refractions, and dynamic lighting, which require real-time
updates based on the client’s viewpoint. Network latency delays
these updates, making it difficult to render such effects accurately

in a server-client architecture. Additionally, volumetric effects such
as smoke or clouds can be difficult to represent accurately with
a limited number of quads. Future work could explore hybrid ap-
proaches that combine local rendering of view-dependent effects
with server-side geometry streaming. Additionally, our system could
be extended to support alpha-blended multi-layered meshes, simu-
lating view-dependent effects, similar to [Broxton et al. 2020].

A key challenge is improving geometry visibility determination to
minimize false positives and negatives from a single view. Although
EDP works well, it can sometimes miss disoccluded regions. Adjust-
ing thresholds can mitigate this issue, but increases data size due to
false positives. A more adaptive and precise approach is needed to
balance accuracy and efficiency.

A promising direction for future research would be the develop-
ment of a fully rate-adaptive scheme that takes advantage of the
tunable parameters presented in this work. Such a system could
dynamically balance viewcell size, quad merging thresholds, and
temporal compression settings based on current bandwidth con-
ditions and rendering requirements. This could enable real-time
optimization of data rates without compromising visual fidelity,
particularly in constrained network environments.
Split rendering techniques have potential applications beyond

XR headsets, such as cloud-based 3D gaming and volumetric video
streaming. Although our current pipeline supports high-speed in-
terconnects (100–500 Mbps), broader deployment over typical con-
sumer internet connections, especially in bandwidth-constrained or
variable environments, requires aggressive bitrate reduction, target-
ing sub-100 Mbps to ensure accessibility at scale.

6 CONCLUSION
We present a quad-based geometry streaming system for splitting
complex scene rendering between a server and a lightweight client,
such as AR/VR headsets. Our approach uses Effective Depth Peeling
to capture visible and potentially visible geometry from within a
viewing sphere, enabling robust occlusion handling in dynamic
scenes. Temporal compression exploits frame-to-frame redundancy,
while a video-friendly texture atlas improves shading compression
and reduces video size.

Evaluated on real-world game scenes, our method handles vary-
ing geometric and lighting complexity, outperforming prior quad-
based techniques in data size while maintaining visual quality. It
achieves data rates comparable to depth- or mesh-based approaches,
while effectively capturing disocclusion events.

ACKNOWLEDGMENTS
This work was supported in part by the NSF under Grant No.
CNS1956095, the NSF Graduate Research Fellowship under Grant
No. DGE2140739, and Bosch Research. Any opinion, findings, con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the NSF.

REFERENCES
Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle

Åström, and Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proceedings of the ACM on Computer Graphics and Interactive Techniques 3,
2 (2020), 15:1–15:23. https://doi.org/10.1145/3406183

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3406183

QUASAR: Quad-based Adaptive Streaming And Rendering • 17

C. Andujar, P. Brunet, A. Chica, I. Navazo, J. Rossignac, and A. Vinacua. 2004. Computing
Maximal Tiles and Application to Impostor-Based Simplification. Computer Graph-
ics Forum 23, 3 (2004), 401–410. https://doi.org/10.1111/j.1467-8659.2004.00771.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2004.00771.x

Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tompkin.
2020. MatryODShka: Real-time 6DoF Video View Synthesis Using Multi-sphere
Images. In Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I (Glasgow, United Kingdom). Springer-Verlag,
Berlin, Heidelberg, 441–459. https://doi.org/10.1007/978-3-030-58452-8_26

Kevin Boos, David Chu, and Eduardo Cuervo. 2016. FlashBack: Immersive Virtual Reality
on Mobile Devices via Rendering Memoization. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services (Singapore,
Singapore) (MobiSys ’16). Association for Computing Machinery, New York, NY,
USA, 291–304. https://doi.org/10.1145/2906388.2906418

Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew
Duvall, Jason Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec. 2020. Immer-
sive light field video with a layered mesh representation. ACM Trans. Graph. 39, 4,
Article 86 (Aug. 2020), 15 pages. https://doi.org/10.1145/3386569.3392485

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. 2023.
MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field
Rendering on Mobile Architectures. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 16569–16578. https://doi.org/10.1109/CVPR52729.
2023.01590

Daniel Cohen-Or, Yair Mann, and Shachar Fleishman. 1999. Deep compression for
streaming texture intensive animations. In Proceedings of the 26th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM
Press/Addison-Wesley Publishing Co., USA, 261–267. https://doi.org/10.1145/
311535.311564

Cyril Crassin, David Luebke, Michael Mara, MorganMcGuire, Brent Oster, Peter Shirley,
Peter-Pike Sloan, and Chris Wyman. 2015. CloudLight: A System for Amortizing
Indirect Lighting in Real-Time Rendering. Journal of Computer Graphics Techniques
(JCGT) 4, 4 (15 October 2015), 1–27. http://jcgt.org/published/0004/04/01/

Eduardo Cuervo, Alec Wolman, Landon P. Cox, Kiron Lebeck, Ali Razeen, Stefan Saroiu,
and Madanlal Musuvathi. 2015. Kahawai: High-Quality Mobile Gaming Using GPU
Offload. In Proceedings of the 13th Annual International Conference on Mobile Systems,
Applications, and Services (Florence, Italy) (MobiSys ’15). Association for Computing
Machinery, New York, NY, USA, 121–135. https://doi.org/10.1145/2742647.2742657

Paul Debevec, Yizhou Yu, and George Borshukov. 1998. Efficient View-Dependent
Image-Based Rendering with Projective Texture-Mapping. In Rendering Techniques
’98, George Drettakis and Nelson Max (Eds.). Springer Vienna, Vienna, 105–116.

Xavier Décoret, Frédo Durand, François X. Sillion, and Julie Dorsey. 2003. Billboard
clouds for extreme model simplification. ACM Trans. Graph. 22, 3 (July 2003),
689–696. https://doi.org/10.1145/882262.882326

Piotr Didyk, Elmar Eisemann, Tobias Ritschel, Karol Myszkowski, and Hans-Peter Seidel.
2010a. Perceptually-motivated Real-time Temporal Upsampling of 3D Content for
High-refresh-rate Displays. Comput. Graph. Forum 29 (05 2010), 713–722. https:
//doi.org/10.1111/j.1467-8659.2009.01641.x

Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol Myszkowski, and Hans-Peter
Seidel. 2010b. Adaptive Image-space Stereo View Synthesis. In Vision, Modeling, and
Visualization (2010), Reinhard Koch, Andreas Kolb, and Christof Rezk-Salama (Eds.).
The Eurographics Association. https://doi.org/10.2312/PE/VMV/VMV10/299-306

Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol Myszkowski, and Hans-Peter
Seidel. 2010c. Adaptive Image-space Stereo View Synthesis. In Vision, Modeling, and
Visualization (2010), Reinhard Koch, Andreas Kolb, and Christof Rezk-Salama (Eds.).
The Eurographics Association. https://doi.org/10.2312/PE/VMV/VMV10/299-306

Christoph Ebner, Shohei Mori, Peter Mohr, Yifan Peng, Dieter Schmalstieg, Gordon
Wetzstein, and Denis Kalkofen. 2022. Video See-Through Mixed Reality with Focus
Cues. IEEE Transactions on Visualization and Computer Graphics 28, 5 (2022), 2256–
2266.

Epic Games. 2017. Unreal Engine Sun Temple, Open Research Content
Archive (ORCA). http://developer.nvidia.com/orca/epic-games-sun-temple
http://developer.nvidia.com/orca/epic-games-sun-temple.

Cass Everitt. 2001. Interactive Order-Independent Transparency. White Paper 6.
NVIDIA. 7 pages. https://www.nvidia.com/en-us/drivers/Interactive-
Order-Transparency/

Michael Garland and Paul S. Heckbert. 2023. Surface Simplification Using
Quadric Error Metrics (1 ed.). Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/3596711.3596727

Schaufler Gernot. 1998. Image-based object representation by layered im-
postors. In Proceedings of the ACM Symposium on Virtual Reality Software
and Technology (Taipei, Taiwan) (VRST ’98). Association for Computing
Machinery, New York, NY, USA, 99–104. https://doi.org/10.1145/293701.
293714

Google. 2019. Google Stadia. https://stadia.google.com
J. Hladky, H.P. Seidel, and M. Steinberger. 2021. SnakeBinning: Efficient

Temporally Coherent Triangle Packing for Shading Streaming. Computer
Graphics Forum 40, 2 (2021), 475–488. https://doi.org/10.1111/cgf.142648
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142648

J. Hladky, H. P. Seidel, and M. Steinberger. 2019. Tes-
sellated Shading Streaming. Computer Graphics Forum
38, 4 (2019), 171–182. https://doi.org/10.1111/cgf.13780
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13780

Jozef Hladky, Michael Stengel, Nicholas Vining, Bernhard Kerbl, Hans-Peter
Seidel, and Markus Steinberger. 2022. QuadStream: A Quad-Based Scene
Streaming Architecture for Novel Viewpoint Reconstruction. ACM Trans.
Graph. 41, 6, Article 233 (Nov. 2022), 13 pages. https://doi.org/10.1145/
3550454.3555524

Stefan Jeschke and Michael Wimmer. 2002. Textured Depth Meshes for
Real-Time Rendering of Arbitrary Scenes. Technical Report TR-186-2-
02-13. Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology, Favoritenstrasse 9-11/E193-02, A-1040 Vienna, Aus-
tria. https://www.cg.tuwien.ac.at/research/publications/2002/Jeschke-
2002-TDM/ human contact: technical-report@cg.tuwien.ac.at.

Brian Karis, Rune Stubbe, and Graham Wihlidal. 2021. A Deep Dive into
Nanite Virtualized Geometry. In ACM SIGGRAPH.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Dret-
takis. 2023. 3D Gaussian Splatting for Real-Time Radiance Field Ren-
dering. ACM Trans. Graph. 42, 4, Article 139 (July 2023), 14 pages.
https://doi.org/10.1145/3592433

Janghun Kim and Sungkil Lee. 2023. Potentially Visible Hidden-Volume
Rendering for Multi-View Warping. ACM Trans. Graph. 42, 4, Article 86
(July 2023), 11 pages. https://doi.org/10.1145/3592108

Babis Koniaris, Maggie Kosek, David Sinclair, and KennyMitchell. 2017. Real-
time Rendering with Compressed Animated Light Fields. In Proceedings
of the 43rd Graphics Interface Conference (Edmonton, Alberta, Canada)
(GI ’17). Canadian Human-Computer Communications Society, Waterloo,
CAN, 33–40.

Babis Koniaris, Maggie Kosek, David Sinclair, and Kenny Mitchell. 2018.
GPU-accelerated depth codec for real-time, high-quality light field recon-
struction. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 3 (July
2018), 15 pages. https://doi.org/10.1145/3203193

Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017. Furion:
Engineering High-Quality Immersive Virtual Reality on Today’s Mobile
Devices. In Proceedings of the 23rd Annual International Conference on
Mobile Computing and Networking (Snowbird, Utah, USA) (MobiCom ’17).
Association for Computing Machinery, New York, NY, USA, 409–421.
https://doi.org/10.1145/3117811.3117815

Puneet Lall, Silviu Borac, Dave Richardson, Matt Pharr, and Manfred Ernst.
2018. View-Region Optimized Image-Based Scene Simplification. Proc.
ACM Comput. Graph. Interact. Tech. 1, 2, Article 26 (Aug. 2018), 22 pages.
https://doi.org/10.1145/3233311

Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury Degtyarev,
Sergey Grizan, Alec Wolman, and Jason Flinn. 2015. Outatime: Using
Speculation to Enable Low-Latency Continuous Interaction for Mobile
Cloud Gaming. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services (Florence, Italy) (MobiSys
’15). Association for Computing Machinery, New York, NY, USA, 151–165.
https://doi.org/10.1145/2742647.2742656

Edward Lu, Sagar Bharadwaj, Mallesham Dasari, Connor Smith, Srinivasan
Seshan, and Anthony Rowe. 2023. RenderFusion: Balancing Local and Re-
mote Rendering for Interactive 3D Scenes . In 2023 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR). IEEE Computer Society,
Los Alamitos, CA, USA, 312–321. https://doi.org/10.1109/ISMAR59233.
2023.00046

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1111/j.1467-8659.2004.00771.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2004.00771.x
https://doi.org/10.1007/978-3-030-58452-8_26
https://doi.org/10.1145/2906388.2906418
https://doi.org/10.1145/3386569.3392485
https://doi.org/10.1109/CVPR52729.2023.01590
https://doi.org/10.1109/CVPR52729.2023.01590
https://doi.org/10.1145/311535.311564
https://doi.org/10.1145/311535.311564
http://jcgt.org/published/0004/04/01/
https://doi.org/10.1145/2742647.2742657
https://doi.org/10.1145/882262.882326
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.2312/PE/VMV/VMV10/299-306
https://doi.org/10.2312/PE/VMV/VMV10/299-306
http://developer.nvidia.com/orca/epic-games-sun-temple
https://www.nvidia.com/en-us/drivers/Interactive-Order-Transparency/
https://www.nvidia.com/en-us/drivers/Interactive-Order-Transparency/
https://doi.org/10.1145/3596711.3596727
https://doi.org/10.1145/293701.293714
https://doi.org/10.1145/293701.293714
https://stadia.google.com
https://doi.org/10.1111/cgf.142648
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142648
https://doi.org/10.1111/cgf.13780
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13780
https://doi.org/10.1145/3550454.3555524
https://doi.org/10.1145/3550454.3555524
https://www.cg.tuwien.ac.at/research/publications/2002/Jeschke-2002-TDM/
https://www.cg.tuwien.ac.at/research/publications/2002/Jeschke-2002-TDM/
https://doi.org/10.1145/3592433
https://doi.org/10.1145/3592108
https://doi.org/10.1145/3203193
https://doi.org/10.1145/3117811.3117815
https://doi.org/10.1145/3233311
https://doi.org/10.1145/2742647.2742656
https://doi.org/10.1109/ISMAR59233.2023.00046
https://doi.org/10.1109/ISMAR59233.2023.00046

18 • Edward Lu and Anthony Rowe

Magic Leap. 2024. Magic Leap Remote Rendering. https://developer-
docs.magicleap.cloud/docs/guides/remote-rendering

ZanderMajercik, Jean-Philippe Guertin, Derek Nowrouzezahrai, andMorgan
McGuire. 2019. Dynamic Diffuse Global Illumination with Ray-Traced
Irradiance Fields. Journal of Computer Graphics Techniques (JCGT) 8, 2 (5
June 2019), 1–30. http://jcgt.org/published/0008/02/01/

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Stein-
berger, Francisco Vicente Carrasco, and Fernando De La Torre. 2024.
Taming 3DGS: High-Quality Radiance Fields with Limited Resources. In
SIGGRAPH Asia 2024 Conference Papers (SA ’24). Association for Com-
puting Machinery, New York, NY, USA, Article 2, 11 pages. https:
//doi.org/10.1145/3680528.3687694

A. Mammen. 1989. Transparency and antialiasing algorithms implemented
with the virtual pixel maps technique. IEEE Computer Graphics and
Applications 9, 4 (1989), 43–55. https://doi.org/10.1109/38.31463

William R. Mark, Leonard McMillan, and Gary Bishop. 1997. Post-rendering
3Dwarping. In Proceedings of the 1997 Symposium on Interactive 3D Graph-
ics (Providence, Rhode Island, USA) (I3D ’97). Association for Computing
Machinery, New York, NY, USA, 7–ff. https://doi.org/10.1145/253284.
253292

Morgan McGuire. 2017. Computer Graphics Archive. https://casual-
effects.com/data https://casual-effects.com/data.

Jiayi Meng, Sibendu Paul, and Y. Charlie Hu. 2020. Coterie: Exploiting Frame
Similarity to Enable High-Quality Multiplayer VR on Commodity Mobile
Devices. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Ma-
chinery, New York, NY, USA, 923–937. https://doi.org/10.1145/3373376.
3378516

Inc. Meta Platforms. 2016. Zstandard. GitHub repository. https://github.
com/facebook/zstd

Inc. Meta Platforms. 2021. Air Link. https://www.meta.com/blog/quest/
introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-
oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-
quest-2-and-more/

Inc. Meta Platforms. 2024. Meta Horizon Hyperscape Demo.
https://www.meta.com/experiences/meta-horizon-hyperscape-
demo/7972066712871980/

Microsoft. 2020. Xbox Cloud Gaming. https://www.xbox.com/en-us/play
Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi

Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local
Light Field Fusion: Practical View Synthesis with Prescriptive Sampling
Guidelines. ACM Transactions on Graphics (TOG) (2019).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. 2021. NeRF: representing scenes as
neural radiance fields for view synthesis. Commun. ACM 65, 1, 99–106.
https://doi.org/10.1145/3503250

D. Mlakar, M. Steinberger, and D. Schmalstieg. 2024. End-to-
End Compressed Meshlet Rendering. Computer Graphics Fo-
rum 43, 1 (2024), e15002. https://doi.org/10.1111/cgf.15002
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.15002

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert.
2025. Compact 3D Scene Representation via Self-Organizing Gaussian
Grids. In Computer Vision – ECCV 2024. Springer Nature Switzerland,
Cham, 18–34. https://doi.org/10.1007/978-3-031-73013-9_2

MPEG. 2023. MPEG Immersive Video. https://mpeg-miv.org/
Joerg H. Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff, Mina Makar,

Markus Steinberger, and Dieter Schmalstieg. 2018. Shading atlas stream-
ing. ACM Trans. Graph. 37, 6, Article 199 (Dec. 2018), 16 pages. https:
//doi.org/10.1145/3272127.3275087

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022.
Instant neural graphics primitives with a multiresolution hash encoding.
ACM Trans. Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.
org/10.1145/3528223.3530127

NVIDIA. 2020. GeForce NOW. https://www.nvidia.com/en-us/geforce-now/
NVIDIA. 2023. NVIDIA CloudXR. https://www.nvidia.com/en-us/design-

visualization/solutions/cloud-xr/
Oculus. 2016. Asynchronous Space Warp. https://developers.meta.com/

horizon/blog/asynchronous-spacewarp/
Fabrizio Pece, Jan Kautz, and Tim Weyrich. 2011. Adapting standard video

codecs for depth streaming. In Proceedings of the 17th Eurographics Con-
ference on Virtual Environments & Third Joint Virtual Reality (Nottingham,
UK) (EGVE - JVRC’11). Eurographics Association, Goslar, DEU, 59–66.

Eric Penner and Li Zhang. 2017. Soft 3D reconstruction for view synthesis.
ACM Trans. Graph. 36, 6, Article 235 (Nov. 2017), 11 pages. https://doi.
org/10.1145/3130800.3130855

Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross.
2000. Surfels: surface elements as rendering primitives. In Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., USA,
335–342. https://doi.org/10.1145/344779.344936

Yingsi Qin, Wei-Yu Chen, Matthew O’Toole, and Aswin C. Sankara-
narayananan. 2023. Split-LohmannMultifocal Displays. ACMTransactions
on Graphics / SIGGRAPH 31 (Aug 2023). https://doi.org/10.1145/3592110

Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo Cuervo, David
Chu, and Hans-Peter Seidel. 2016. Proxy-guided Image-based Rendering
for Mobile Devices. Comput. Graph. Forum 35, 7 (Oct. 2016), 353–362.

Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. 2001.
Texture mapping progressive meshes. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’01). Association for Computing Machinery, New York, NY, USA, 409–416.
https://doi.org/10.1145/383259.383307

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Lay-
ered depth images. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’98). Associ-
ation for Computing Machinery, New York, NY, USA, 231–242. https:
//doi.org/10.1145/280814.280882

Shu Shi and Cheng-Hsin Hsu. 2015. A Survey of Interactive Remote Render-
ing Systems. ACM Comput. Surv. 47, 4, Article 57 (may 2015), 29 pages.
https://doi.org/10.1145/2719921

Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio
Criminisi, and Andrew Fitzgibbon. 2013. Scene Coordinate Regression
Forests for Camera Relocalization in RGB-D Images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2930–2937. https://doi.org/10.1109/CVPR.2013.377

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong
Yuan, Yi Xu, and Andreas Geiger. 2023. NeRFPlayer: A Streamable Dy-
namic Scene Representation with Decomposed Neural Radiance Fields.
IEEE Transactions on Visualization and Computer Graphics 29, 5 (2023),
2732–2742. https://doi.org/10.1109/TVCG.2023.3247082

Michael Stengel, Zander Majercik, Benjamin Boudaoud, and Morgan
McGuire. 2021. A distributed, decoupled system for losslessly stream-
ing dynamic light probes to thin clients. (2021), 159–172. https:
//doi.org/10.1145/3458305.3463379

Unity Technologies. 2018. Robot Lab. https://assetstore.unity.com/packages/
essentials/tutorial-projects/robot-lab-unity-4x-7006

Unity Technologies. 2022. Viking Village URP. https://assetstore.unity.com/
packages/essentials/tutorial-projects/viking-village-urp-29140

Valve. 2015. Steam Link. https://store.steampowered.com/remoteplay
J. M. P. vanWaveren. 2016. The Asynchronous TimeWarp for Virtual Reality

on Consumer Hardware. In Proceedings of the 22nd ACM Conference on

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://developer-docs.magicleap.cloud/docs/guides/remote-rendering
https://developer-docs.magicleap.cloud/docs/guides/remote-rendering
http://jcgt.org/published/0008/02/01/
https://doi.org/10.1145/3680528.3687694
https://doi.org/10.1145/3680528.3687694
https://doi.org/10.1109/38.31463
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://casual-effects.com/data
https://casual-effects.com/data
https://doi.org/10.1145/3373376.3378516
https://doi.org/10.1145/3373376.3378516
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://www.meta.com/blog/quest/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://www.meta.com/blog/quest/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://www.meta.com/blog/quest/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://www.meta.com/blog/quest/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://www.meta.com/experiences/meta-horizon-hyperscape-demo/7972066712871980/
https://www.meta.com/experiences/meta-horizon-hyperscape-demo/7972066712871980/
https://www.xbox.com/en-us/play
https://doi.org/10.1145/3503250
https://doi.org/10.1111/cgf.15002
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.15002
https://doi.org/10.1007/978-3-031-73013-9_2
https://mpeg-miv.org/
https://doi.org/10.1145/3272127.3275087
https://doi.org/10.1145/3272127.3275087
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/design-visualization/solutions/cloud-xr/
https://www.nvidia.com/en-us/design-visualization/solutions/cloud-xr/
https://developers.meta.com/horizon/blog/asynchronous-spacewarp/
https://developers.meta.com/horizon/blog/asynchronous-spacewarp/
https://doi.org/10.1145/3130800.3130855
https://doi.org/10.1145/3130800.3130855
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/3592110
https://doi.org/10.1145/383259.383307
https://doi.org/10.1145/280814.280882
https://doi.org/10.1145/280814.280882
https://doi.org/10.1145/2719921
https://doi.org/10.1109/CVPR.2013.377
https://doi.org/10.1109/TVCG.2023.3247082
https://doi.org/10.1145/3458305.3463379
https://doi.org/10.1145/3458305.3463379
https://assetstore.unity.com/packages/essentials/tutorial-projects/robot-lab-unity-4x-7006
https://assetstore.unity.com/packages/essentials/tutorial-projects/robot-lab-unity-4x-7006
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://store.steampowered.com/remoteplay

QUASAR: Quad-based Adaptive Streaming And Rendering • 19

Virtual Reality Software and Technology (Munich, Germany) (VRST ’16).
Association for Computing Machinery, New York, NY, USA, 37–46. https:
//doi.org/10.1145/2993369.2993375

Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg Hermann
Mueller, Thomas Neff, Markus Steinberger, and Dieter Schmalstieg. 2023.
Trim Regions for Online Computation of From-Region Potentially Visible
Sets. ACM Trans. Graph. 42, 4, Article 85 (July 2023), 15 pages. https:
//doi.org/10.1145/3592434

Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu, Taku Komura,
Christian Theobalt, and Wenping Wang. 2023. F2-NeRF: Fast Neural
Radiance Field Training with Free Camera Trajectories . (June 2023),
4150–4159. https://doi.org/10.1109/CVPR52729.2023.00404

Penghao Wang, Zhirui Zhang, Liao Wang, Kaixin Yao, Siyuan Xie, Jingyi
Yu, Minye Wu, and Lan Xu. 2024. Vˆ3: Viewing Volumetric Videos on
Mobiles via Streamable 2D Dynamic Gaussians. ACM Transactions on

Graphics (TOG) 43, 6 (2024), 1–13.
Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei,

Wenyu Liu, Qi Tian, and Xinggang Wang. 2024. 4D Gaussian Splatting
for Real-Time Dynamic Scene Rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 20310–
20320.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely.
2018. Stereo magnification: learning view synthesis using multiplane
images. ACM Trans. Graph. 37, 4, Article 65 (July 2018), 12 pages. https:
//doi.org/10.1145/3197517.3201323

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross.
2001. Surface splatting. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’01). Associ-
ation for Computing Machinery, New York, NY, USA, 371–378. https:
//doi.org/10.1145/383259.383300

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/2993369.2993375
https://doi.org/10.1145/2993369.2993375
https://doi.org/10.1145/3592434
https://doi.org/10.1145/3592434
https://doi.org/10.1109/CVPR52729.2023.00404
https://doi.org/10.1145/3197517.3201323
https://doi.org/10.1145/3197517.3201323
https://doi.org/10.1145/383259.383300
https://doi.org/10.1145/383259.383300

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 High-level System Pipeline
	3.2 Quad Generation
	3.3 Adding Potentially Visible Quads
	3.4 Storage and Data Payload
	3.5 Temporal Compression
	3.6 Client Reconstruction
	3.7 Transparency

	4 Evaluation
	4.1 Experimental Setup
	4.2 End-to-End Performance
	4.3 Visual Quality vs. Data Rate

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

